On the number of lattice points in three-dimensional solids of revolution
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 343-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive an accurate estimate for the order of magnitude of the remainder term in the problem of the number of lattice points in families of homothetic domains belonging to the class of three-dimensional solids of revolution with smooth boundaries (under certain additional conditions). This estimate is realized in the case of the solid bounded by a standardly embedded torus, for which the second term of the expansion, which describes the dependence of the number of lattice points on the dilation parameter, is written in explicit form.
@article{IM2_2000_64_2_a4,
     author = {D. A. Popov},
     title = {On the number of lattice points in three-dimensional solids of revolution},
     journal = {Izvestiya. Mathematics },
     pages = {343--361},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a4/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - On the number of lattice points in three-dimensional solids of revolution
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 343
EP  - 361
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a4/
LA  - en
ID  - IM2_2000_64_2_a4
ER  - 
%0 Journal Article
%A D. A. Popov
%T On the number of lattice points in three-dimensional solids of revolution
%J Izvestiya. Mathematics 
%D 2000
%P 343-361
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a4/
%G en
%F IM2_2000_64_2_a4
D. A. Popov. On the number of lattice points in three-dimensional solids of revolution. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 343-361. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a4/

[1] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ, Nauka, M., 1976 | MR

[2] Van der Corput, “Neue Zahlentheoretische Abschatzungen”, Math. Ann., 89 (1923), 215–254 | DOI | MR

[3] Khua Lo-gen, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, Mir, M., 1964 | MR | Zbl

[4] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[5] Krätzel E., Lattice Points, Berlin, 1988 | MR

[6] Randol B., “A lattice point problem, I”, Trans. AMS, 121 (1966), 257–268 | DOI | MR | Zbl

[7] Randol B., “A lattice point problem, II”, Trans. AMS, 126 (1966), 101–113 | DOI | MR

[8] Colin de Verdier, “Nombre de Points entiers dans une famille homothetique de domaines de $\mathbb R^N$”, Ann. Scient. Ecole Norm. Sup. Serie 4, 10 (1977), 559–575 | MR

[9] Huxley M. N., “Exponential Sums and Lattice Points, II”, Proc London Math. Soc., Part 2, 66 (1993), 279–301 | DOI | MR | Zbl

[10] Hlawka E., “Über Integrale auf convexen Korpern”, Monatsh. Math., 54 (1950), 1–36 | DOI | MR | Zbl

[11] Khermander L., Analiz lineinykh differentsialnykh operatorov. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[12] Krätzel E., Nowak W. G., “Lattice points in large convex bodies, II”, Acta Arithm., 62:3 (1992), 283–295 | MR

[13] Varchenko A. N., “O chisle tselykh tochek v semeistvakh gomotetichnykh oblastei v $\mathbb R^n$”, Funkts. analiz i ego prilozh., 17:2 (1983), 1–6 | MR | Zbl

[14] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[15] Kosygin D. V., Minasov A. A., Sinai Ya. G., “Statisticheskie svoistva spektrov operatorov Laplasa–Beltrami na poverkhnostyakh Liuvillya”, UMN, 48:4 (1993), 3–130 | MR | Zbl

[16] Grei A., Trubki, Mir, M., 1993 | MR

[17] Norden A. P., Kratkii kurs differentsialnoi geometrii, Fizmatgiz, M., 1958

[18] Popov D. A., “Otsenki s konstantami dlya nekotorykh klassov ostsilliruyuschikh integralov”, UMN, 52:1 (1997), 77–148 | MR | Zbl

[19] Popov D. A., “Sfericheskaya skhodimost ryada i integrala Fure indikatora dvumernoi oblasti”, Tr. MIAN, 218, Nauka, M., 1997, 354–373 | Zbl