Braid monodromy factorizations and diffeomorphism types
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 311-341
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that if two cuspidal plane curves $B_1$ and $B_2$ have equivalent braid monodromy factorizations, then $B_1$ and $B_2$ are smoothly isotopic in $\mathbb C\mathbb P^2$. As a consequence, we obtain that if $S_1$, $S_2$ are surfaces of general type embedded in a projective space by means of a multiple canonical class and if the discriminant curves (the branch curves) $B_1$, $B_2$ of some smooth projections
of $S_1$, $S_2$ to $\mathbb{CP}^2$ have equivalent braid monodromy factorizations, then $S_1$ and $S_2$ are diffeomorphic (as real four-dimensional manifolds).
@article{IM2_2000_64_2_a3,
author = {Vik. S. Kulikov and M. Teicher},
title = {Braid monodromy factorizations and diffeomorphism types},
journal = {Izvestiya. Mathematics },
pages = {311--341},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a3/}
}
Vik. S. Kulikov; M. Teicher. Braid monodromy factorizations and diffeomorphism types. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 311-341. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a3/