Braid monodromy factorizations and diffeomorphism types
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 311-341

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that if two cuspidal plane curves $B_1$ and $B_2$ have equivalent braid monodromy factorizations, then $B_1$ and $B_2$ are smoothly isotopic in $\mathbb C\mathbb P^2$. As a consequence, we obtain that if $S_1$, $S_2$ are surfaces of general type embedded in a projective space by means of a multiple canonical class and if the discriminant curves (the branch curves) $B_1$$B_2$ of some smooth projections of $S_1$$S_2$ to $\mathbb{CP}^2$ have equivalent braid monodromy factorizations, then $S_1$ and $S_2$ are diffeomorphic (as real four-dimensional manifolds).
@article{IM2_2000_64_2_a3,
     author = {Vik. S. Kulikov and M. Teicher},
     title = {Braid monodromy factorizations and diffeomorphism types},
     journal = {Izvestiya. Mathematics },
     pages = {311--341},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a3/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
AU  - M. Teicher
TI  - Braid monodromy factorizations and diffeomorphism types
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 311
EP  - 341
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a3/
LA  - en
ID  - IM2_2000_64_2_a3
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%A M. Teicher
%T Braid monodromy factorizations and diffeomorphism types
%J Izvestiya. Mathematics 
%D 2000
%P 311-341
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a3/
%G en
%F IM2_2000_64_2_a3
Vik. S. Kulikov; M. Teicher. Braid monodromy factorizations and diffeomorphism types. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 311-341. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a3/