Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_2_a3, author = {Vik. S. Kulikov and M. Teicher}, title = {Braid monodromy factorizations and diffeomorphism types}, journal = {Izvestiya. Mathematics }, pages = {311--341}, publisher = {mathdoc}, volume = {64}, number = {2}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a3/} }
Vik. S. Kulikov; M. Teicher. Braid monodromy factorizations and diffeomorphism types. Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 311-341. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a3/
[1] Artin E., “Theory of braids”, Ann. Math., 48 (1947), 101–126 | DOI | MR | Zbl
[2] Birman J., Braids, Links and Mapping Class Groups, Princeton University Press, 1975 | MR | Zbl
[3] Kulikov Vik. S., “O gipoteze Kizini”, Izv. RAN. Ser. matem., 63:6 (1999), 84–116 | MR
[4] Kulikov Vik. S., “Geometricheskaya realizatsiya $C$-grupp”, Izv. RAN. Ser. matem., 58:4 (1994), 194–203 | Zbl
[5] Kulikov Vik. S., “On the fundamental group of the complement of a hypersurface in ${\mathbb C}^n$”, Springer L.N.M., 1479, 1991, 122–130 | MR | Zbl
[6] Moishezon B., Teicher M., Braid Groups, Singularities and Algebraic Surfaces, Birkhauser (to appear)
[7] Moishezon B., Teicher M., “Braid group techniques in complex geometry. I: Line arrangements in $\mathbb C\mathbb P ^2$”, Contemporary Math., 78 (1988), 425–555 | MR | Zbl
[8] Moishezon B., Teicher M., “Braid group techniques in complex geometry. V: The fundamental group of a complement of a branch curve of a Veronese generic projection”, Communications in Analysis and Geometry, 4:11 (1996), 1–120 | MR | Zbl