Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_1_a6, author = {N. A. Tyurin}, title = {Abelian monopoles: the case of a~positive-dimensional moduli space}, journal = {Izvestiya. Mathematics }, pages = {193--206}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a6/} }
N. A. Tyurin. Abelian monopoles: the case of a~positive-dimensional moduli space. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 193-206. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a6/
[1] Donaldson S., “An application of gauge theory to four dimensional topology”, J. Diff. Geom., 18 (1983), 279–315 | MR | Zbl
[2] Donaldson S., “The Seiberg–Witten equations and 4-manifold topology”, Bulletin of the American mathematical society, 33:1 (1996), 45–70 | DOI | MR | Zbl
[3] Kronheimer P., Mrowka T., “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1 (1994), 797–808 | MR | Zbl
[4] Kotschick D., Morgan J., Taubes C., “Four-manifolds without symplectic structures but with non trivial Seiberg–Witten invariants”, Math. Res. Lett., 2 (1995), 119–124 | MR | Zbl
[5] Taubes C., “The Seiberg–Witten invariants and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | MR | Zbl
[6] Taubes C., “SW – Gr: from the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9:3 (1996), 845–918 | DOI | MR | Zbl
[7] Tyurin N., “Neobkhodimoe i dostatochnoe uslovie deformatsii $B$-monopolya”, Izv. RAN. Ser. matem., 60:1 (1996), 211–224 | MR | Zbl
[8] Tyurin N., “Abelevy monopoli i kompleksnaya geometriya”, Matem. zametki, 65:3 (1998), 420–428 | MR
[9] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–789 | MR
[10] Wu W.-T., “Sur le classes caracteristique des structures fibrees spheriques”, Actual. Sci. Industr., 1183 (1952) | Zbl