Abelian monopoles: the case of a positive-dimensional moduli space
Izvestiya. Mathematics, Tome 64 (2000) no. 1, pp. 193-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider (in the framework of the general Seiberg–Witten theory) the case when the moduli space of solutions of the Seiberg–Witten equations has positive even dimension. We describe a connection between the Seiberg–Witten invariants of a given manifold $X$ and those of the connected sum $Y=X \# d\overline{\mathbb{CP}}^2$ where $d=(1/2)\operatorname{v.dim}\mathcal M_{SW}$. We introduce the notion of a complex structure with degeneration (based on the connection between spinor geometry and complex geometry) and generalize the notion of a pseudoholomorphic curve to the case when the underlying manifold a priori has no almost complex structure.
@article{IM2_2000_64_1_a6,
     author = {N. A. Tyurin},
     title = {Abelian monopoles: the case of a~positive-dimensional moduli space},
     journal = {Izvestiya. Mathematics},
     pages = {193--206},
     year = {2000},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a6/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Abelian monopoles: the case of a positive-dimensional moduli space
JO  - Izvestiya. Mathematics
PY  - 2000
SP  - 193
EP  - 206
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a6/
LA  - en
ID  - IM2_2000_64_1_a6
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Abelian monopoles: the case of a positive-dimensional moduli space
%J Izvestiya. Mathematics
%D 2000
%P 193-206
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a6/
%G en
%F IM2_2000_64_1_a6
N. A. Tyurin. Abelian monopoles: the case of a positive-dimensional moduli space. Izvestiya. Mathematics, Tome 64 (2000) no. 1, pp. 193-206. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a6/

[1] Donaldson S., “An application of gauge theory to four dimensional topology”, J. Diff. Geom., 18 (1983), 279–315 | MR | Zbl

[2] Donaldson S., “The Seiberg–Witten equations and 4-manifold topology”, Bulletin of the American mathematical society, 33:1 (1996), 45–70 | DOI | MR | Zbl

[3] Kronheimer P., Mrowka T., “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1 (1994), 797–808 | MR | Zbl

[4] Kotschick D., Morgan J., Taubes C., “Four-manifolds without symplectic structures but with non trivial Seiberg–Witten invariants”, Math. Res. Lett., 2 (1995), 119–124 | MR | Zbl

[5] Taubes C., “The Seiberg–Witten invariants and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | MR | Zbl

[6] Taubes C., “SW – Gr: from the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9:3 (1996), 845–918 | DOI | MR | Zbl

[7] Tyurin N., “Neobkhodimoe i dostatochnoe uslovie deformatsii $B$-monopolya”, Izv. RAN. Ser. matem., 60:1 (1996), 211–224 | MR | Zbl

[8] Tyurin N., “Abelevy monopoli i kompleksnaya geometriya”, Matem. zametki, 65:3 (1998), 420–428 | MR

[9] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–789 | MR

[10] Wu W.-T., “Sur le classes caracteristique des structures fibrees spheriques”, Actual. Sci. Industr., 1183 (1952) | Zbl