Wavelets in spaces of harmonic functions
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 143-171

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Meyer's bases of wavelets [1], we construct orthogonal bases of wavelets in the spaces $h_p$ $(1\leqslant p\leqslant \infty)$ of functions harmonic in the unit disc $|z|1$ or in the annulus $0\rho|z|1$. The partial sums of the Fourier series with respect to these bases possess approximating properties comparable with the best approximations by trigonometric polynomials.
@article{IM2_2000_64_1_a4,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {Wavelets in spaces of harmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {143--171},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Wavelets in spaces of harmonic functions
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 143
EP  - 171
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/
LA  - en
ID  - IM2_2000_64_1_a4
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Wavelets in spaces of harmonic functions
%J Izvestiya. Mathematics 
%D 2000
%P 143-171
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/
%G en
%F IM2_2000_64_1_a4
Yu. N. Subbotin; N. I. Chernykh. Wavelets in spaces of harmonic functions. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 143-171. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/