Wavelets in spaces of harmonic functions
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 143-171
Voir la notice de l'article provenant de la source Math-Net.Ru
Using Meyer's bases of wavelets [1], we construct orthogonal bases of wavelets in the
spaces $h_p$ $(1\leqslant p\leqslant \infty)$ of functions harmonic in the unit disc $|z|1$ or in the annulus $0\rho|z|1$. The partial sums of the Fourier series with respect to these bases possess approximating properties comparable with the best approximations by trigonometric polynomials.
@article{IM2_2000_64_1_a4,
author = {Yu. N. Subbotin and N. I. Chernykh},
title = {Wavelets in spaces of harmonic functions},
journal = {Izvestiya. Mathematics },
pages = {143--171},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/}
}
Yu. N. Subbotin; N. I. Chernykh. Wavelets in spaces of harmonic functions. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 143-171. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/