Wavelets in spaces of harmonic functions
Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 143-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Meyer's bases of wavelets [1], we construct orthogonal bases of wavelets in the spaces $h_p$ $(1\leqslant p\leqslant \infty)$ of functions harmonic in the unit disc $|z|1$ or in the annulus $0\rho|z|1$. The partial sums of the Fourier series with respect to these bases possess approximating properties comparable with the best approximations by trigonometric polynomials.
@article{IM2_2000_64_1_a4,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {Wavelets in spaces of harmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {143--171},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Wavelets in spaces of harmonic functions
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 143
EP  - 171
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/
LA  - en
ID  - IM2_2000_64_1_a4
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Wavelets in spaces of harmonic functions
%J Izvestiya. Mathematics 
%D 2000
%P 143-171
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/
%G en
%F IM2_2000_64_1_a4
Yu. N. Subbotin; N. I. Chernykh. Wavelets in spaces of harmonic functions. Izvestiya. Mathematics , Tome 64 (2000) no. 1, pp. 143-171. http://geodesic.mathdoc.fr/item/IM2_2000_64_1_a4/

[1] Meyer Y., “Ondelettes et operateurs. I: Ondelets”, Actualites Mathematiques, Hermann, Paris, 1990 | MR

[2] Offin D., Oskolkov K., “A note on orthonormal polynomial bases and wavelets”, Constructive approx., 9 (1993), 319–325 | DOI | MR | Zbl

[3] Korneichuk N. P., Ligun A. A., Doronin V. G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982 | MR

[4] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gosizdat, M.–L., 1952 | MR

[5] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[6] Bochkarev S. V., “Suschestvovanie bazisa v prostranstve analiticheskikh v edinichnom kruge funktsii i nekotorye svoistva sistemy Franklina”, Matem. sb., 95 (137):1 (1974), 3–18 | Zbl

[7] Bochkarev S. V., “Postroenie polinomialnykh bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, Tr. MIAN SSSR, 164, Nauka, M., 1983, 49–74 | MR | Zbl

[8] Bochkarev S. V., “Postroenie interpolyatsionnogo diadicheskogo bazisa v prostranstve nepreryvnykh funktsii na osnove yader Feiera”, Tr. MIAN SSSR, 172, Nauka, M., 1985, 29–59 | MR | Zbl

[9] Bourgain J., “Homogeneous polynomials on the ball and polynomial bases”, Israel J. Math., 68:3 (1989), 327–347 | DOI | MR | Zbl

[10] Woitaszczyk P., Wozniakowski K., Orthonormal polynomial basis in function spaces, Preprint 475, Inst. Math. PAS, 1990