Cycles of small codimension on a~simple $2p$- or $4p$-dimensional Abelian variety
Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1221-1262

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $J$ be a simple $2p$- or $4p$-dimensional Abelian variety over the field of complex numbers, where $p\ne 5$ is a prime number. Assume that one of the following conditions holds: 1) $\operatorname{Cent\,End}^0(J)$ is a totally real field of degree 1, 2 or 4 over $\mathbb Q$; 2) $J$ is a simple $2p$-dimensional Abelian variety of CM-type $(K,\Phi)$ such that $K/\mathbb Q$ is a normal extension; 3) $J$ is a simple $2p$-dimensional Abelian variety such that $\operatorname{End}^0(J)$ is an imaginary quadratic extension of $\mathbb Q$. Then for every positive integer $r$ the $\mathbb Q$-space $H^{2r}(J,\mathbb Q)\cap H^{r,r}$ is spanned by cohomology classes of intersections of divisors.
@article{IM2_1999_63_6_a5,
     author = {S. G. Tankeev},
     title = {Cycles of small codimension on a~simple $2p$- or $4p$-dimensional {Abelian} variety},
     journal = {Izvestiya. Mathematics },
     pages = {1221--1262},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a5/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Cycles of small codimension on a~simple $2p$- or $4p$-dimensional Abelian variety
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1221
EP  - 1262
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a5/
LA  - en
ID  - IM2_1999_63_6_a5
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Cycles of small codimension on a~simple $2p$- or $4p$-dimensional Abelian variety
%J Izvestiya. Mathematics 
%D 1999
%P 1221-1262
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a5/
%G en
%F IM2_1999_63_6_a5
S. G. Tankeev. Cycles of small codimension on a~simple $2p$- or $4p$-dimensional Abelian variety. Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1221-1262. http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a5/