Conservation of Hamiltonian structures in Whitham's averaging method
Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1171-1201.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider Whitham's averaging method for systems with a local field-theoretic Hamiltonian structure. We prove that such a Hamiltonian structure is conserved in the process. The study is based on the procedure (suggested by Dubrovin and Novikov) of averaging the local Poisson bracket, for which we establish the necessary properties of conservation of the Jacobi identity and invariance.
@article{IM2_1999_63_6_a3,
     author = {A. Ya. Maltsev},
     title = {Conservation of {Hamiltonian} structures in {Whitham's} averaging method},
     journal = {Izvestiya. Mathematics },
     pages = {1171--1201},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a3/}
}
TY  - JOUR
AU  - A. Ya. Maltsev
TI  - Conservation of Hamiltonian structures in Whitham's averaging method
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1171
EP  - 1201
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a3/
LA  - en
ID  - IM2_1999_63_6_a3
ER  - 
%0 Journal Article
%A A. Ya. Maltsev
%T Conservation of Hamiltonian structures in Whitham's averaging method
%J Izvestiya. Mathematics 
%D 1999
%P 1171-1201
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a3/
%G en
%F IM2_1999_63_6_a3
A. Ya. Maltsev. Conservation of Hamiltonian structures in Whitham's averaging method. Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1171-1201. http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a3/

[1] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[2] Luke J. C., “A perturbation method for nonlinear dispersive wave problems”, Proc. Roy. Soc. London. Ser. A, 292:1430 (1966), 403–412 | DOI | MR | Zbl

[3] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[4] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[5] Dobrokhotov S. Yu., Maslov V. P., “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI, M., 1980, 3–94

[6] Krichever I. M., “Metod usredneniya dlya dvumernykh “integriruemykh” uravnenii”, Funkts. analiz i ego prilozh., 22:3 (1988), 37–52 | MR | Zbl

[7] Krichever I. M., “Spektralnaya teoriya dvumernykh periodicheskikh operatorov i ee prilozheniya”, UMN, 44:2 (1989), 121–184 | MR | Zbl

[8] Krichever I. M., “Perturbation Theory in Periodic Problems for Two-Dimensional Integrable Systems”, Sov. Sci. Rev. Section C, 9 (1992) | Zbl

[9] Tsarev S. P., “O skobkakh Puassona i odnomernykh gamiltonovykh sistemakh gidrodinamicheskogo tipa”, DAN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[10] Ferapontov E. V., “On integrability of $3\times 3$ semi-Hamiltonian hydrodynamic type systems $u^{i}_{t}=v^{i}_{j}(u)u^{j}_{x}$ which do not possess Riemann invariants”, Physica D, 63 (1993), 50–70 | DOI | MR | Zbl

[11] Ferapontov E. V., “On the matrix Hopf equation and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, Physics Letters A, 179 (1993), 391–397 | DOI | MR

[12] Novikov S. P., Maltsev A. Ya., “Liuvilleva forma usrednennykh skobok Puassona”, UMN, 48:1 (1993), 155–156 | MR | Zbl

[13] Mokhov O. I., “Lokalnye skobki Puassona tretego poryadka”, UMN, 40:5 (1985), 257–258 | MR | Zbl

[14] Mokhov O. I., “Gamiltonovy differentsialnye operatory i kontaktnaya geometriya”, Funkts. analiz i ego prilozh., 21:3 (1987), 53–60 | MR | Zbl

[15] Grinberg N. I., “O skobkakh Puassona gidrodinamicheskogo tipa s vyrozhdennoi metrikoi”, UMN, 40:4 (1985), 217–218 | MR | Zbl

[16] Maltsev A. Ya., Pavlov M. V., “O metode usredneniya Uizema”, Funkts. analiz i ego prilozh., 29:1 (1995), 7–24 | MR | Zbl