On Chisini's conjecture
Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1139-1170

Voir la notice de l'article provenant de la source Math-Net.Ru

Chisini's conjecture asserts that if $B\subset\mathbb P^2$ is a cuspidal curve, then a generic morphism $f$, $\deg f\geqslant 5$, of a smooth projective surface to $\mathbb P^2$ branched along $B$ is unique up to isomorphism. In this paper we prove that Chisini's conjecture is true for $B$ if $\deg f$ is greater than the value of some function depending on the degree, genus and the number of cusps of $B$. This inequality holds for almost all generic morphisms. In particular, on a surface with ample canonical class, it holds for generic morphisms defined by a linear subsystem of the $m$-canonical class, $m\in\mathbb N$. Moreover, we present examples of pairs $B_{1,m},B_{2,m}\subset\mathbb P^2$ ($m\in\mathbb N$, $m\geqslant 5$) of plane cuspidal curves such that (i) $\deg B_{1,m}=\deg B_{2,m}$, and these curves have homeomorphic tubular neighbourhoods in $\mathbb P^2$, but the pairs $(\mathbb P^2,B_{1,m})$ and $(\mathbb P^2,B_{2,m})$ are not homeomorphic; (ii) $B_{i,m}$ is the discriminant curve of a generic morphism $f_{i,m}\colon S_i\to\mathbb P^2$, $i=1,2$, where $S_i$ are surfaces of general type; (iii) the surfaces $S_1$ and $S_2$ are homeomorphic (as four-dimensional real manifolds); (iv) the morphism $f_{i,m}$ is defined by a three-dimensional linear subsystem of the $m$-canonical class of $S_i$.
@article{IM2_1999_63_6_a2,
     author = {Vik. S. Kulikov},
     title = {On {Chisini's} conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {1139--1170},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a2/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On Chisini's conjecture
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1139
EP  - 1170
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a2/
LA  - en
ID  - IM2_1999_63_6_a2
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On Chisini's conjecture
%J Izvestiya. Mathematics 
%D 1999
%P 1139-1170
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a2/
%G en
%F IM2_1999_63_6_a2
Vik. S. Kulikov. On Chisini's conjecture. Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1139-1170. http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a2/