On Chisini's conjecture
Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1139-1170.

Voir la notice de l'article provenant de la source Math-Net.Ru

Chisini's conjecture asserts that if $B\subset\mathbb P^2$ is a cuspidal curve, then a generic morphism $f$, $\deg f\geqslant 5$, of a smooth projective surface to $\mathbb P^2$ branched along $B$ is unique up to isomorphism. In this paper we prove that Chisini's conjecture is true for $B$ if $\deg f$ is greater than the value of some function depending on the degree, genus and the number of cusps of $B$. This inequality holds for almost all generic morphisms. In particular, on a surface with ample canonical class, it holds for generic morphisms defined by a linear subsystem of the $m$-canonical class, $m\in\mathbb N$. Moreover, we present examples of pairs $B_{1,m},B_{2,m}\subset\mathbb P^2$ ($m\in\mathbb N$, $m\geqslant 5$) of plane cuspidal curves such that (i) $\deg B_{1,m}=\deg B_{2,m}$, and these curves have homeomorphic tubular neighbourhoods in $\mathbb P^2$, but the pairs $(\mathbb P^2,B_{1,m})$ and $(\mathbb P^2,B_{2,m})$ are not homeomorphic; (ii) $B_{i,m}$ is the discriminant curve of a generic morphism $f_{i,m}\colon S_i\to\mathbb P^2$, $i=1,2$, where $S_i$ are surfaces of general type; (iii) the surfaces $S_1$ and $S_2$ are homeomorphic (as four-dimensional real manifolds); (iv) the morphism $f_{i,m}$ is defined by a three-dimensional linear subsystem of the $m$-canonical class of $S_i$.
@article{IM2_1999_63_6_a2,
     author = {Vik. S. Kulikov},
     title = {On {Chisini's} conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {1139--1170},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a2/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On Chisini's conjecture
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1139
EP  - 1170
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a2/
LA  - en
ID  - IM2_1999_63_6_a2
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On Chisini's conjecture
%J Izvestiya. Mathematics 
%D 1999
%P 1139-1170
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a2/
%G en
%F IM2_1999_63_6_a2
Vik. S. Kulikov. On Chisini's conjecture. Izvestiya. Mathematics , Tome 63 (1999) no. 6, pp. 1139-1170. http://geodesic.mathdoc.fr/item/IM2_1999_63_6_a2/

[1] Artal-Bartolo E., “Sur les couples de Zariski”, J. Alg. Geom., 3:2 (1994), 223–247 | MR | Zbl

[2] Barlow R., “Some new surfaces with $p_g=0$”, Duke Math. J., 51:4 (1984), 889–904 | DOI | MR | Zbl

[3] Bombieri E., “Canonical models of surfaces of general type”, Publ. Math. IHES, 42 (1973), 171–219 | MR

[4] Catanese F., “On the moduli space of surfaces of general type”, J. Diff. Geom., 19 (1984), 483–515 | MR | Zbl

[5] Catanese F., “Connected components of moduli space”, J. Diff. Geom., 24 (1986), 395–399 | MR | Zbl

[6] Catanese F., “On a Problem of Chisini”, Duke Math. J., 53:1 (1986), 33–42 | DOI | MR | Zbl

[7] Catanese F., Le Brun C., “On the scalar curvature of Einstein manifolds”, Math. Research Letters, 4:6 (1997) | MR | Zbl

[8] Catanese F., Ciliberto C., Mended Lopes M., “On the classification of irregular surfaces of general type with nonbirational bicanonical map”, Transactions of AMS, 350:1 (1988) | MR

[9] Chisini O., “Sulla identita birazionale delle funzioni algebriche di due variabili dotate di una medesima curva di diramazione”, Rend. Ins. Lombardo, 77 (1944), 339–356 | MR | Zbl

[10] Ein L., Lazarsfeld R., “Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension”, Invent. Math., 111 (1993), 51–67 | DOI | MR | Zbl

[11] Freedman M. H., “The topology of four dimensional manifolds”, J. Diff. Geom., 17 (1982), 357–453 | MR | Zbl

[12] Gieseker D., “Global moduli for surfaces of general type”, Invent. Math., 43 (1977), 233–282 | DOI | MR | Zbl

[13] Godeaux L., “Sur une surface algebrique de genre zero et de bigenre deux”, Atti Accad. Naz. Lincei, 14 (1931), 479–481 | Zbl

[14] Kulikov Vik. S., “On the fundamental group of the complement of a hypersurface in $\mathbb C^n$”, Springer L.N.M., 1479, 1991, 122–130 | MR | Zbl

[15] Kulikov Vik. S., “Fundamentalnaya gruppa dopolneniya k giperpoverkhnosti v $\mathbf C^n$”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 407–428 | MR | Zbl

[16] Kulikov Vik. S., “Geometricheskaya realizatsiya $C$-grupp”, Izv. RAN. Ser. matem., 58:4 (1994), 194–203 | Zbl

[17] Kulikov Vik. S., “O strukture fundamentalnoi gruppy dopolneniya k algebraicheskoi krivoi $\mathbb C^2$”, Izv. RAN. Ser. matem., 56:2 (1992), 469–480 | MR | Zbl

[18] Manetti M., “Degeneration of algebraic surfaces and applications to moduli problem”, Tesi di perfezionamento, Scuola Normale Superiore, Pisa, 1996 | Zbl

[19] Moishezon B., “Stable branch curves and braid monodromies”, Springer L.N.M., 862 (1981), 107–192 | MR | Zbl

[20] Moishezon B., Teicher M., “Braid group technique in complex geometry. II: from arrangements of lines and conics to cuspidal curves”, Springer L.N.M., 1479 (1991), 131–180 | MR | Zbl

[21] Nori M., “Zariski's conjecture and related problems”, Ann. Sci. École Norm. Sup. Ser. 4, 16 (1983), 305–344 | MR | Zbl

[22] Oka M., “Two transforms of plane curves and their fundamental groups”, J. Math. Sci. Univ. Tokyo, 3 (1996), 399–443 | MR | Zbl

[23] Persson U., “Chern invariants of surfaces of general type”, Compos. Math., 43:1 (1981), 3–58 | MR | Zbl

[24] Reid M., “Surfaces with $p_g=0,\, \, K^2=1$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 25:1 (1978), 75–92 | MR | Zbl

[25] Shimada I., “A note on Zariski pairs”, Compos. Math., 104:2 (1996), 125–133 | MR | Zbl

[26] Tokunaga H., “A remark on paper: E. Artal-Bartolo, On Zariski pairs”, Kodai Math. J., 19 (1996), 207–217 | DOI | MR | Zbl

[27] Wahl J., “Deformations of plane curves with nodes and cusps”, Amer. J. Math., 96 (1974), 529–577 | DOI | MR | Zbl

[28] Zariski O., “On the topological discriminant group of a Riemann surface of genus $p$”, Amer. J. Math., 59 (1937), 335–358 | DOI | MR | Zbl

[29] Zariski O., Algebraic surfaces, Springer-Verlag, Berlin–N.Y., 1971 | MR | Zbl