On the first case of Fermat's theorem for cyclotomic fields
Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 983-994.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical criteria of Kummer, Mirimanov and Vandiver for the validity of the first case of Fermat's theorem for the field $\mathbb Q$ of rationals and prime exponent $l$ are generalized to the field $\mathbb Q(\root l\of 1)$ and exponent $l$. As a consequence, some simpler criteria are established. For example, the validity of the first case of Fermat's theorem is proved for the field $\mathbb Q(\root l\of 1)$ and exponent $l$ on condition that $l^2$ does not divide $2^l-2$.
@article{IM2_1999_63_5_a4,
     author = {V. A. Kolyvagin},
     title = {On the first case of {Fermat's} theorem for cyclotomic fields},
     journal = {Izvestiya. Mathematics },
     pages = {983--994},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a4/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
TI  - On the first case of Fermat's theorem for cyclotomic fields
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 983
EP  - 994
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a4/
LA  - en
ID  - IM2_1999_63_5_a4
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%T On the first case of Fermat's theorem for cyclotomic fields
%J Izvestiya. Mathematics 
%D 1999
%P 983-994
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a4/
%G en
%F IM2_1999_63_5_a4
V. A. Kolyvagin. On the first case of Fermat's theorem for cyclotomic fields. Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 983-994. http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a4/

[1] Wiles A., “Modular curves and Fermat's Last Theorem”, Annals of Math., 141 (1995), 443–551 | DOI | MR | Zbl

[2] Wieferich A., “Zum letzten Fermat'schen Theorem”, J. Reine Angew. Math., 136 (1909), 293–302 | Zbl

[3] Kolyvagin V. A., “Uravneniya Ferma nad krugovymi polyami”, Tr. Matem. in-ta im. V. A. Steklova RAN, 208 (1995), 163–185 | MR | Zbl

[4] Kummer E. E., “Einige Sätze über die aus den Wurzeln der Gleichung $\alpha ^\lambda =1$ gebildeten complexen Zahlen, für den Fall class die Klassensahl durch $\lambda $ theilbar ist, nebst Anwendungen derselben auf einen weiteren Beweis des letztes Fermat'schen Lehrsatzes”, Math. Abh. Akad. Wiss. Berlin, 1857, 41–74

[5] Mirimanoff D., “L'équation indéterminée $x^l+y^l+z^l=0$ et le criterium de Kummer”, J. Reine Angew. Math., 128 (1905), 45–68

[6] Vandiver H. S., “Laws of reciprocity and the first case of Fermat's last theorem”, Proc. Nat. Acad. Sci. U.S.A., 11 (1925), 292–298 | DOI | Zbl

[7] Granville A., Monogan M. B., “The first case of Fermat's last theorem is true for all prime exponents up to 714,591,416,091,389”, Transactions of the American Math. Soc., 306 (1988), 329–359 | DOI | MR | Zbl

[8] Krasner M., “Sur le premier cas du the théoréme de Fermat”, C.R.Acad. Sci. Paris, 199 (1934), 256–258 | Zbl

[9] Keller W., Löh G., “The criteria of Kummer and Mirimanoff extended to include 22 consecutive irregular pairs”, Tokyo J. Math., 6 (1983), 397–402 | MR | Zbl

[10] Eichler M., “Eine Bemerkung zur Fermat'schen Vermutung”, Acta arithm., 11 (1965), 129–131 | MR | Zbl

[11] Wagstaff S. S., “The irregular primes to 125000”, Math. Comput., 32 (1978), 583–591 | DOI | MR | Zbl

[12] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[13] Iwasawa K., “On explicit formulas for the norm residue symbol”, J. Math. Soc. Japan, 20 (1968), 151–164 | MR

[14] Coppersmith D., “Fermat's last theorem (case 1) and the Weiferich criterion”, Math. Comput., 54 (1990), 895–902 | DOI | MR | Zbl

[15] Silverman J. H., “Wieferich's Criterion and abc-Conjecture”, J. Number Theory, 30 (1988), 226–237 | DOI | MR | Zbl