On the first case of Fermat's theorem for cyclotomic fields
Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 983-994

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical criteria of Kummer, Mirimanov and Vandiver for the validity of the first case of Fermat's theorem for the field $\mathbb Q$ of rationals and prime exponent $l$ are generalized to the field $\mathbb Q(\root l\of 1)$ and exponent $l$. As a consequence, some simpler criteria are established. For example, the validity of the first case of Fermat's theorem is proved for the field $\mathbb Q(\root l\of 1)$ and exponent $l$ on condition that $l^2$ does not divide $2^l-2$.
@article{IM2_1999_63_5_a4,
     author = {V. A. Kolyvagin},
     title = {On the first case of {Fermat's} theorem for cyclotomic fields},
     journal = {Izvestiya. Mathematics },
     pages = {983--994},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a4/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
TI  - On the first case of Fermat's theorem for cyclotomic fields
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 983
EP  - 994
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a4/
LA  - en
ID  - IM2_1999_63_5_a4
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%T On the first case of Fermat's theorem for cyclotomic fields
%J Izvestiya. Mathematics 
%D 1999
%P 983-994
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a4/
%G en
%F IM2_1999_63_5_a4
V. A. Kolyvagin. On the first case of Fermat's theorem for cyclotomic fields. Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 983-994. http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a4/