The space of parallel linear networks with a~fixed boundary
Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 923-962

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the structure of the set $[G,\varphi]_\Gamma$ of immersed linear networks in $\mathbb R^N$ that are parallel to a given immersed linear network $\Gamma\colon G\to\mathbb R^N$ and whose boundary $\varphi$ coincides with the boundary of $\Gamma$. We prove that $[G,\varphi]_\Gamma$ is a convex polyhedral subset in the configuration space of moving vertices of the graph $G$. We also calculate the dimension of this convex subset and estimate the number of its faces of maximal dimension. The results obtained are used to describe the space of all locally minimal (weighted minimal) networks in $\mathbb R^N$ with a fixed topology and a fixed boundary. In the case of planar networks in which the degrees of vertices are at most three (Steiner networks), this dimension is calculated in topological terms.
@article{IM2_1999_63_5_a2,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {The space of parallel linear networks with a~fixed boundary},
     journal = {Izvestiya. Mathematics },
     pages = {923--962},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a2/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - The space of parallel linear networks with a~fixed boundary
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 923
EP  - 962
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a2/
LA  - en
ID  - IM2_1999_63_5_a2
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T The space of parallel linear networks with a~fixed boundary
%J Izvestiya. Mathematics 
%D 1999
%P 923-962
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a2/
%G en
%F IM2_1999_63_5_a2
A. O. Ivanov; A. A. Tuzhilin. The space of parallel linear networks with a~fixed boundary. Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 923-962. http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a2/