General quantum polynomials: irreducible modules and Morita equivalence
Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 847-880.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we continue the investigation of the structure of finitely generated modules over rings of general quantum (Laurent) polynomials. We obtain a description of the lattice of submodules of periodic finitely generated modules and describe the irreducible modules. We investigate the problem of Morita equivalence of rings of general quantum polynomials, consider properties of division rings of fractions, and solve Zariski's problem for quantum polynomials.
@article{IM2_1999_63_5_a0,
     author = {V. A. Artamonov},
     title = {General quantum polynomials: irreducible modules and {Morita} equivalence},
     journal = {Izvestiya. Mathematics },
     pages = {847--880},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a0/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - General quantum polynomials: irreducible modules and Morita equivalence
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 847
EP  - 880
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a0/
LA  - en
ID  - IM2_1999_63_5_a0
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T General quantum polynomials: irreducible modules and Morita equivalence
%J Izvestiya. Mathematics 
%D 1999
%P 847-880
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a0/
%G en
%F IM2_1999_63_5_a0
V. A. Artamonov. General quantum polynomials: irreducible modules and Morita equivalence. Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 847-880. http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a0/

[1] Artamonov V. A., “Proektivnye moduli nad kvantovymi algebrami polinomov”, Matem. sb., 185:7 (1994), 3–12 | MR | Zbl

[2] Manin Yu. I., Topics in non-commutative geometry, Princeton Univ. Press, 1991 | MR | Zbl

[3] Demidov E. E., Kvantovye gruppy, Faktorial, M., 1998

[4] Maltsiniotis G., “Groupes quantiques et structures dirrérentielles”, C. R. Acad. Sci. Paris. Sér. I. Math., 311 (1990), 831–834 | MR | Zbl

[5] Alev J., Dumas F., “Sur corps des fractions de certaines algébres quantique”, J. Algebra, 170 (1994), 229–265 | DOI | MR | Zbl

[6] Panov A. N., “Telo skruchennykh ratsionalnykh funktsii i telo ratsionalnykh funktsii na $\operatorname {GL}_q(n,K)$”, Algebra i analiz, 7:1 (1995), 153–169 | MR | Zbl

[7] McConnell J. C., Pettit J. J., “Crossed products and multiplicative analogues of Weyl algebras”, J. London Math. Soc., 38:1 (1988), 47–55 | DOI | MR | Zbl

[8] Artamonov V. A., “Kvantovaya problema Serra”, UMN, 53:4 (1998), 3–77 | MR

[9] Artamonov V. A., “Moduli nad kvantovymi algebrami polinomov”, Matem. zametki, 59:4 (1996), 497–503 | MR | Zbl

[10] Artamonov V. A., “Periodicheskie moduli nad obschimi kvantovymi loranovskimi polinomami”, Matem. zametki, 61:1 (1997), 10–17 | MR | Zbl

[11] Bovdi A. A., Gruppovye koltsa, UMK, Kiev, 1988

[12] Artamonov V. A., “Projective modules over crossed products”, J. Algebra, 173 (1995), 696–714 | DOI | MR | Zbl

[13] Artamonov V. A., “Avtomorfizmy razlozhimykh proektivnykh modulei”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 63–69 | MR | Zbl

[14] McConnell J. C., Robson J. C., Noncommutative Noetherian rings, John Wiley, Chichester – N. Y., 1987 | MR | Zbl

[15] Stafford J. T., “Endomorphisms of right ideals of the Weyl algebra”, Trans.Amer. Math. Soc., 299:2 (1987), 623–639 | DOI | MR | Zbl

[16] Smith P. S., “An example of a ring Morita equivalent to the Weyl algebra $A_1$”, J. Algebra, 73:2 (1981), 352–355 | DOI | MR

[17] Mikhalev A. V., “Isomorphisms and anti-isomorphisms of endomorphism rings of modules”, First international Tainan-Moscow algebra Workshop, Walter de Gruyter, Berlin – N. Y., 1996, 69–122 | MR

[18] Quillen D., “Higher algebraic $K$-theory”, Lecture Notes Math., 1973, no. 341, 87–147