General quantum polynomials: irreducible modules and Morita equivalence
Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 847-880

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we continue the investigation of the structure of finitely generated modules over rings of general quantum (Laurent) polynomials. We obtain a description of the lattice of submodules of periodic finitely generated modules and describe the irreducible modules. We investigate the problem of Morita equivalence of rings of general quantum polynomials, consider properties of division rings of fractions, and solve Zariski's problem for quantum polynomials.
@article{IM2_1999_63_5_a0,
     author = {V. A. Artamonov},
     title = {General quantum polynomials: irreducible modules and {Morita} equivalence},
     journal = {Izvestiya. Mathematics },
     pages = {847--880},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a0/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - General quantum polynomials: irreducible modules and Morita equivalence
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 847
EP  - 880
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a0/
LA  - en
ID  - IM2_1999_63_5_a0
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T General quantum polynomials: irreducible modules and Morita equivalence
%J Izvestiya. Mathematics 
%D 1999
%P 847-880
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a0/
%G en
%F IM2_1999_63_5_a0
V. A. Artamonov. General quantum polynomials: irreducible modules and Morita equivalence. Izvestiya. Mathematics , Tome 63 (1999) no. 5, pp. 847-880. http://geodesic.mathdoc.fr/item/IM2_1999_63_5_a0/