Differentiable operators of nearly best approximation
Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 631-647.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a normed linear space, let $Y\subset X$ be a finite-dimensional subspace, and let $\varepsilon>0$. We define a multiplicative $\varepsilon$-selection $M\colon X\to Y$ to be a map such that $$ \forall\,x\in X \qquad \|Mx-x\|\leqslant \inf\{\|x-y\|\colon y\in Y\}(1+\varepsilon). $$ We prove that there is an $\varepsilon$-selection $M$ whose smoothness coincides with that of the norm in $X$. We show that, generally speaking, it is impossible to find an $\varepsilon$-selection of greater smoothness in $L^p[0,1]$.
@article{IM2_1999_63_4_a0,
     author = {P. V. Al'brecht},
     title = {Differentiable operators of nearly best approximation},
     journal = {Izvestiya. Mathematics },
     pages = {631--647},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a0/}
}
TY  - JOUR
AU  - P. V. Al'brecht
TI  - Differentiable operators of nearly best approximation
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 631
EP  - 647
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a0/
LA  - en
ID  - IM2_1999_63_4_a0
ER  - 
%0 Journal Article
%A P. V. Al'brecht
%T Differentiable operators of nearly best approximation
%J Izvestiya. Mathematics 
%D 1999
%P 631-647
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a0/
%G en
%F IM2_1999_63_4_a0
P. V. Al'brecht. Differentiable operators of nearly best approximation. Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 631-647. http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a0/

[1] Berdyshev V. I., “Nepreryvnost mnogoznachnogo otobrazheniya, svyazannogo s zadachei minimizatsii funktsionalov”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 483–509 | MR | Zbl

[2] Deville R., Godefroy G., Zizler V., Smoothness and renorming in Banach spaces, Longman Scientific Technical, N. Y., 1993 | MR

[3] Semenov S. M., Simmetricheskie funktsii na prostranstvakh $L^p$, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1973

[4] Shapiro H. S., Topics in approximation theory, Lecture Notes in Mathematics, 187, Berlin, 1971 | MR

[5] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[6] Tsarkov I. G., “Sglazhivanie ravnomernykh otobrazhenii v prostranstvakh $L^p$”, Matem. zametki, 54:3 (1993), 123–140 | MR | Zbl