Differentiable operators of nearly best approximation
Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 631-647
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a normed linear space, let $Y\subset X$ be a finite-dimensional subspace, and let $\varepsilon>0$. We define a multiplicative $\varepsilon$-selection $M\colon X\to Y$ to be a map such that
$$
\forall\,x\in X \qquad \|Mx-x\|\leqslant \inf\{\|x-y\|\colon y\in Y\}(1+\varepsilon).
$$ We prove that there is an $\varepsilon$-selection $M$ whose smoothness coincides with that of the norm in $X$. We show that, generally speaking, it is impossible to find an $\varepsilon$-selection of greater smoothness in $L^p[0,1]$.
@article{IM2_1999_63_4_a0,
author = {P. V. Al'brecht},
title = {Differentiable operators of nearly best approximation},
journal = {Izvestiya. Mathematics },
pages = {631--647},
publisher = {mathdoc},
volume = {63},
number = {4},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a0/}
}
P. V. Al'brecht. Differentiable operators of nearly best approximation. Izvestiya. Mathematics , Tome 63 (1999) no. 4, pp. 631-647. http://geodesic.mathdoc.fr/item/IM2_1999_63_4_a0/