Subalgebras and discriminants of anticommutative algebras
Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 583-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the configuration of subalgebras in generic $n$-dimensional $k$-argument anticommutative algebras and “regular” anticommutative algebras.
@article{IM2_1999_63_3_a6,
     author = {E. A. Tevelev},
     title = {Subalgebras and discriminants of anticommutative algebras},
     journal = {Izvestiya. Mathematics },
     pages = {583--598},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a6/}
}
TY  - JOUR
AU  - E. A. Tevelev
TI  - Subalgebras and discriminants of anticommutative algebras
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 583
EP  - 598
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a6/
LA  - en
ID  - IM2_1999_63_3_a6
ER  - 
%0 Journal Article
%A E. A. Tevelev
%T Subalgebras and discriminants of anticommutative algebras
%J Izvestiya. Mathematics 
%D 1999
%P 583-598
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a6/
%G en
%F IM2_1999_63_3_a6
E. A. Tevelev. Subalgebras and discriminants of anticommutative algebras. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 583-598. http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a6/

[1] Bernshtein I. N., Gelfand I. M., Gelfand S. I., “Kletki Shuberta i kogomologii prostranstv $G/P$”, Ukr. matem. zh., 28:3 (1973), 3–26

[2] Kleiman S. L., “Chislennaya teoriya osobennostei”, Ukr. matem. zh., 35:6 (1980), 69–148 | MR | Zbl

[3] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972 | MR

[4] Mamford D., Kompleksnye proektivnye mnogoobraziya, Mir, M., 1979 | MR

[5] Fulton U., Teoriya peresecheniya, Mir, M., 1989 | MR

[6] Bergman G. M., “The diamond lemma for ring theory”, Adv. in Math., 29:2 (1978), 178–218 | DOI | MR | Zbl

[7] Bott R., “Homogeneous vector bundles”, Ann. of Math., 66:2 (1957), 203–248 | DOI | MR | Zbl

[8] De Concini C., Weyman J., “A formula with nonnegative terms for the degree of the dual variety of a homogeneous space”, Proc. Amer. Math. Soc., 125:1 (1997), 1–8 | DOI | MR | Zbl

[9] Knop F., Menzel G., “Duale Varietäten von Fahnenvarietäten”, Comment. Math. Helv., 62:1 (1987), 38–61 | DOI | MR | Zbl

[10] Lascoux A., “Degree of the dual Grassman variety”, Comm. Algebra, 9:11 (1981), 1215–1225 | DOI | MR | Zbl

[11] Tevelev E. A., “Generic Algebras”, Transformation Groups, 1:1–2 (1996), 127–151 | DOI | MR | Zbl