On asymptotic values of entire functions
Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 549-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of functions, an asymptotic spot of a function $f$ is defined to be a pair $\{a,\Gamma\}$, where $a\in\overline{\mathbb C}$ and $\Gamma$ is a continuous curve such that $f(z)\to a$ ($z\to\infty$, $z\in\Gamma$). In this paper we introduce a new notion of a strong asymptotic spot. Using this notion, we extend some results of Ahlfors (concerning asymptotic spots of entire functions of finite order) to functions of infinite order. We obtain exact estimates for the number of different strong asymptotic spots $\{\infty,\Gamma_j\}$ of entire functions of finite or infinite lower order.
@article{IM2_1999_63_3_a4,
     author = {I. I. Marchenko},
     title = {On asymptotic values of entire functions},
     journal = {Izvestiya. Mathematics },
     pages = {549--560},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a4/}
}
TY  - JOUR
AU  - I. I. Marchenko
TI  - On asymptotic values of entire functions
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 549
EP  - 560
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a4/
LA  - en
ID  - IM2_1999_63_3_a4
ER  - 
%0 Journal Article
%A I. I. Marchenko
%T On asymptotic values of entire functions
%J Izvestiya. Mathematics 
%D 1999
%P 549-560
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a4/
%G en
%F IM2_1999_63_3_a4
I. I. Marchenko. On asymptotic values of entire functions. Izvestiya. Mathematics , Tome 63 (1999) no. 3, pp. 549-560. http://geodesic.mathdoc.fr/item/IM2_1999_63_3_a4/

[1] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[2] Heins M., “Asymptotic spots of entire and meromorphic functions”, Ann. of Math., 66 (1957), 430–439 | DOI | MR | Zbl

[3] Iversen F., Recherches sur les fonctions inverses des fonctions méromorphes, Thèse, Helsingfors, 1914

[4] Ahlfors L., “Über die asymptotischen Werte der meromorphen Funktionen endlicher Ordnung”, Acta Acad. Aboensis. Math. et Phys., 6:9 (1932), 1–8 | Zbl

[5] Petrenko V. P., Rost meromorfnykh funktsii, Vischa shkola, Kharkov, 1978 | MR | Zbl

[6] Marchenko I. I., Scherba A. I., “O velichinakh otklonenii meromorfnykh funktsii”, Matem. sb., 181:1 (1990), 3–24 | Zbl

[7] Bergweiler W., Bock H., “On the growth of meromorphic functions of infinite order”, J. Anal. Math., 64 (1994), 327–336 | DOI | MR | Zbl

[8] Eremenko A., “An analogue of the defect relation for the uniform metric”, Complex Variables Theory Appl., 64 (1997), 83–97 | MR

[9] Kheiman U. K., Meromorfnye funktsii, IL, M., 1966

[10] Baernstein A., “Integral means, univalent functions and circular symmetrization”, Acta Math., 133 (1974), 139–169 | DOI | MR

[11] Kheiman U. K., Mnogolistnye funktsii, IL, M., 1960

[12] Marchenko I. I., “O velichinakh otklonenii i protyazhenii meromorfnykh funktsii konechnogo nizhnego poryadka”, Matem. sb., 186:3 (1995), 85–102 | MR | Zbl

[13] Gariepy R., Lewis I. L., “Space analogues of some theorems for subharmonic and meromorphic functions”, Arkiv Math., 13:1 (1975), 91–105 | DOI | MR | Zbl

[14] Fuchs W. H. J., “A theorem on $\min _{|z|=r}\log |f(z)|/T(r,f)$”, Symp. on Compl. Anal. (Canterbury, 1973), Cambr. Univ. Press, London, 1975, 69–72

[15] Essen M., Shea D. F., “Applications of Denjoy integral inequalities and differential inequalities to growth problems for subharmonic and meromorphic functions”, Proc. Roy. Irich Acad., A82:2 (1982), 201–216 | MR