A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 129-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a hyperbolic system of conservation laws on the space of symmetric second-order matrices. The right-hand side of this system contains the functional calculus operator $\tilde f(U)$generated in the general case only by a continuous scalar function $f(u)$. For these systems we define and describe the set of singular entropies, introduce the concept of generalized entropy solutions of the corresponding Cauchy problem, and investigate the properties of generalized entropy solutions. We define the class of strong generalized entropy solutions, in which the Cauchy problem has precisely one solution. We suggest a condition on the initial data under which any generalized entropy solution is strong, which implies its uniqueness. Under this condition we establish that the “vanishing viscosity” method converges. An example shows that in the general case there can be more than one generalized entropy solution.
@article{IM2_1999_63_1_a6,
     author = {E. Yu. Panov},
     title = {A~non-local theory of generalized entropy solutions of the {Cauchy} problem for a~class of hyperbolic systems of conservation laws},
     journal = {Izvestiya. Mathematics },
     pages = {129--179},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 129
EP  - 179
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/
LA  - en
ID  - IM2_1999_63_1_a6
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws
%J Izvestiya. Mathematics 
%D 1999
%P 129-179
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/
%G en
%F IM2_1999_63_1_a6
E. Yu. Panov. A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 129-179. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/

[1] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR | Zbl

[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, 2-e izd., Nauka, M., 1978 | MR | Zbl

[3] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl

[4] Lax P. D., Shock waves and entropy, contributions to Nonlinear Functional Analysis, ed. E. A. Zarantonello, Academic Press, 1971, 603–634 | MR

[5] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[6] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl

[7] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, DAN SSSR, 314:1 (1990), 79–84 | MR | Zbl

[8] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Annali Univ. Ferrara-Sez., 15 (1994), 31–53 | MR

[9] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl

[10] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. RAN, 339:2 (1994), 151–154 | MR | Zbl

[11] Panov E. Yu., “Ob odnom klasse sistem kvazilineinykh zakonov sokhraneniya”, Matem. sb., 1997, no. 5, 85–112 | MR | Zbl

[12] Panov E. Yu., “Obobschennye resheniya zadachi Koshi dlya nekotorykh klassov giperbolicheskikh sistem pervogo poryadka”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1996, no. 6, 75–77 | MR

[13] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR | Zbl

[14] Tartar L., “Compensated compactness and applications to partial differential equations”, Research notes in mathematics, nonlinear analysis, and mechanics, Heriot-Watt Symposium, V. 4, 1979, 136–212 | MR | Zbl

[15] DiPerna R. J., “Measure-valued solutions to conservation laws”, Arch. Rational Mech. Anal., 88 (1985), 223–270 | DOI | MR | Zbl

[16] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980

[17] Murat F., “Compacité par compensation”, Ann. Scuola Norm. sup. Pisa, 5 (1978), 489–507 | MR | Zbl