A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 129-179

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a hyperbolic system of conservation laws on the space of symmetric second-order matrices. The right-hand side of this system contains the functional calculus operator $\tilde f(U)$generated in the general case only by a continuous scalar function $f(u)$. For these systems we define and describe the set of singular entropies, introduce the concept of generalized entropy solutions of the corresponding Cauchy problem, and investigate the properties of generalized entropy solutions. We define the class of strong generalized entropy solutions, in which the Cauchy problem has precisely one solution. We suggest a condition on the initial data under which any generalized entropy solution is strong, which implies its uniqueness. Under this condition we establish that the “vanishing viscosity” method converges. An example shows that in the general case there can be more than one generalized entropy solution.
@article{IM2_1999_63_1_a6,
     author = {E. Yu. Panov},
     title = {A~non-local theory of generalized entropy solutions of the {Cauchy} problem for a~class of hyperbolic systems of conservation laws},
     journal = {Izvestiya. Mathematics },
     pages = {129--179},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 129
EP  - 179
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/
LA  - en
ID  - IM2_1999_63_1_a6
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws
%J Izvestiya. Mathematics 
%D 1999
%P 129-179
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/
%G en
%F IM2_1999_63_1_a6
E. Yu. Panov. A~non-local theory of generalized entropy solutions of the Cauchy problem for a~class of hyperbolic systems of conservation laws. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 129-179. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/