@article{IM2_1999_63_1_a6,
author = {E. Yu. Panov},
title = {A~non-local theory of generalized entropy solutions of the {Cauchy} problem for a~class of hyperbolic systems of conservation laws},
journal = {Izvestiya. Mathematics},
pages = {129--179},
year = {1999},
volume = {63},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/}
}
TY - JOUR AU - E. Yu. Panov TI - A non-local theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws JO - Izvestiya. Mathematics PY - 1999 SP - 129 EP - 179 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/ LA - en ID - IM2_1999_63_1_a6 ER -
%0 Journal Article %A E. Yu. Panov %T A non-local theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws %J Izvestiya. Mathematics %D 1999 %P 129-179 %V 63 %N 1 %U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/ %G en %F IM2_1999_63_1_a6
E. Yu. Panov. A non-local theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws. Izvestiya. Mathematics, Tome 63 (1999) no. 1, pp. 129-179. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a6/
[1] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR | Zbl
[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, 2-e izd., Nauka, M., 1978 | MR | Zbl
[3] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl
[4] Lax P. D., Shock waves and entropy, contributions to Nonlinear Functional Analysis, ed. E. A. Zarantonello, Academic Press, 1971, 603–634 | MR
[5] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl
[6] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl
[7] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, DAN SSSR, 314:1 (1990), 79–84 | MR | Zbl
[8] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Annali Univ. Ferrara-Sez., 15 (1994), 31–53 | MR
[9] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl
[10] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. RAN, 339:2 (1994), 151–154 | MR | Zbl
[11] Panov E. Yu., “Ob odnom klasse sistem kvazilineinykh zakonov sokhraneniya”, Matem. sb., 1997, no. 5, 85–112 | MR | Zbl
[12] Panov E. Yu., “Obobschennye resheniya zadachi Koshi dlya nekotorykh klassov giperbolicheskikh sistem pervogo poryadka”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1996, no. 6, 75–77 | MR
[13] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR | Zbl
[14] Tartar L., “Compensated compactness and applications to partial differential equations”, Research notes in mathematics, nonlinear analysis, and mechanics, Heriot-Watt Symposium, V. 4, 1979, 136–212 | MR | Zbl
[15] DiPerna R. J., “Measure-valued solutions to conservation laws”, Arch. Rational Mech. Anal., 88 (1985), 223–270 | DOI | MR | Zbl
[16] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980
[17] Murat F., “Compacité par compensation”, Ann. Scuola Norm. sup. Pisa, 5 (1978), 489–507 | MR | Zbl