$S$-duality testing and exceptional bundles
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 103-117

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss algebraic-geometric problems connected with the mathematical testing of the $S$-duality conjecture. In particular, we give a complete description of the field configurations in classical gauge theories for which the coefficient of the Gell–Mann–Low beta-function in the one-loop approximation equals zero. Realizing one of these configurations geometrically on Del Pezzo surfaces, we demonstrate its relation to exceptional bundles: every exceptional bundle whose cohomology is zero and whose slope is negative but exceeds the slope of the canonical class gives a correlation function for $S$-duality testing.
@article{IM2_1999_63_1_a4,
     author = {B. V. Karpov},
     title = {$S$-duality testing and exceptional bundles},
     journal = {Izvestiya. Mathematics },
     pages = {103--117},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a4/}
}
TY  - JOUR
AU  - B. V. Karpov
TI  - $S$-duality testing and exceptional bundles
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 103
EP  - 117
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a4/
LA  - en
ID  - IM2_1999_63_1_a4
ER  - 
%0 Journal Article
%A B. V. Karpov
%T $S$-duality testing and exceptional bundles
%J Izvestiya. Mathematics 
%D 1999
%P 103-117
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a4/
%G en
%F IM2_1999_63_1_a4
B. V. Karpov. $S$-duality testing and exceptional bundles. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 103-117. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a4/