$S$-duality testing and exceptional bundles
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 103-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss algebraic-geometric problems connected with the mathematical testing of the $S$-duality conjecture. In particular, we give a complete description of the field configurations in classical gauge theories for which the coefficient of the Gell–Mann–Low beta-function in the one-loop approximation equals zero. Realizing one of these configurations geometrically on Del Pezzo surfaces, we demonstrate its relation to exceptional bundles: every exceptional bundle whose cohomology is zero and whose slope is negative but exceeds the slope of the canonical class gives a correlation function for $S$-duality testing.
@article{IM2_1999_63_1_a4,
     author = {B. V. Karpov},
     title = {$S$-duality testing and exceptional bundles},
     journal = {Izvestiya. Mathematics },
     pages = {103--117},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a4/}
}
TY  - JOUR
AU  - B. V. Karpov
TI  - $S$-duality testing and exceptional bundles
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 103
EP  - 117
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a4/
LA  - en
ID  - IM2_1999_63_1_a4
ER  - 
%0 Journal Article
%A B. V. Karpov
%T $S$-duality testing and exceptional bundles
%J Izvestiya. Mathematics 
%D 1999
%P 103-117
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a4/
%G en
%F IM2_1999_63_1_a4
B. V. Karpov. $S$-duality testing and exceptional bundles. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 103-117. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a4/

[1] Burbaki N., Gruppy i algebry Li, Gl. VII, VIII, Mir, M., 1978 | MR

[2] Gorodentsev A. L., Rudakov A. N., “Exceptional Vector Bundles on Projective Spaces”, Duke Math. J., 54 (1987), 115–130 | DOI | MR | Zbl

[3] Gorodentsev A. L., Leenson M. I., How to calculate the correlation function in twisted SYM $N=2$, $N_f=4$ QFT on projective plane, Preprint MPI 96-49

[4] Donaldson S., Kronheimer P., The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990 | MR | Zbl

[5] Klyachko A. A., “Moduli vektornykh rassloenii i chisla klassov”, Funktsion. analiz i ego prilozh., 25:1 (1991), 81–83 | MR | Zbl

[6] Kuleshov S. A., Orlov D. O., “Isklyuchitelnye puchki na poverkhnostyakh del Petstso”, Izv. RAN. Ser. matem., 58:3 (1994), 53–87 | MR | Zbl

[7] Kuleshov S. A., Moduli Space of Bundles on a Quadric, Warwick Preprints: 18/1996

[8] Kuleshov S. A., Moduli Space of sheaves necessary for testing $S$-duality conjecture, Preprint MPI 97-32

[9] Montonen C., Olive D., “Magnetic monopoles as gauge particle”, Phys. Lett. B, 72 (1977), 117–132 | DOI

[10] Pidstrigach V. Ya., Tyurin A. N., “Invarianty gladkoi struktury algebraicheskoi poverkhnosti, zadavaemye operatorom Diraka”, Izv. RAN. Ser. matem., 56:2 (1992), 279–371 | MR | Zbl

[11] Tyurin N. A., “Neobkhodimoe i dostatochnoe usloviya deformatsii $B$-monopolya v instanton”, Izv. RAN. Ser. matem., 60:1 (1996), 211–224 | MR | Zbl

[12] Vafa G., Witten E., “A strong coupling test of $S$-duality”, Nucl. Phys. B, 431 (1995), 3–77 | DOI | MR

[13] Shvarts A. S., Kvantovaya teoriya polya i topologiya, Nauka, M., 1989 | MR | Zbl