Renewal equations on the semi-axis
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 57-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the renewal equation $$ \varphi(x)=g(x)+\int_0^x\varphi(x-t)\,dF(t), \qquad g\in L_1(0;\infty), $$ where $F$ is the distribution function of a non-negative random variable. If $F$ has a non-trivial absolutely continuous component or is a distribution of absolutely continuous type, then we prove that the solution of the renewal equation can be written as follows: $$ \varphi=\varphi_1+\varphi_2+\biggl[\int_0^{\infty}x\,dF(x)\biggr]^{-1}\int_0^{\infty}g(x)\,dt, $$ where $\varphi_1\in L_1(0;\infty)$, $\varphi_2\in C[0;\infty)$, and $\varphi_2(+\infty)=0$ If $g$ is bounded and $g(+\infty)=0$, then $\varphi_1(+\infty)=0$. The proof is based on the structural factorization of the renewal equation into absolutely continuous, discrete, and singular components.
@article{IM2_1999_63_1_a2,
     author = {N. B. Engibaryan},
     title = {Renewal equations on the semi-axis},
     journal = {Izvestiya. Mathematics },
     pages = {57--71},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a2/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Renewal equations on the semi-axis
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 57
EP  - 71
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a2/
LA  - en
ID  - IM2_1999_63_1_a2
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Renewal equations on the semi-axis
%J Izvestiya. Mathematics 
%D 1999
%P 57-71
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a2/
%G en
%F IM2_1999_63_1_a2
N. B. Engibaryan. Renewal equations on the semi-axis. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a2/

[1] Engibaryan N. B., “Uravneniya v svertkakh, soderzhaschie singulyarnye veroyatnostnye raspredeleniya”, Izv. RAN. Ser. matem., 60:2 (1996), 21–48 | MR | Zbl

[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984

[4] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[5] Sevastyanov B. A., “Teoriya vosstanovleniya”, Itogi nauki i tekhniki. Teoriya veroyatnostei. matem. statistika. teor. kibernetika, 11, VINITI AN SSSR, M., 1974, 99–127

[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[7] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Matem. analiz, 22, VINITI AN SSSR, M., 1984, 175–244 | MR

[8] Engibaryan N. B., Gevorkyan G. G., “Novye teoremy dlya integralnykh uravnenii vosstanovleniya”, Izv. NAN Armenii. Matematika, 32:1 (1997), 5–20 | MR | Zbl

[9] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[10] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR