On Walsh series with monotone coefficients
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 37-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $a_n\downarrow 0$ and $\sum_{n=0}^\infty a_n^2=+\infty$ then the Walsh series $\sum_{n=0}^\infty a_nW_n(x)$ has the following property. For any measurable function $f(x)$ which is finite almost everywhere, there are numbers $\delta_n=0,\pm 1$ such that the series $\sum_{n=0}^\infty\delta_na_nW_n(x)$ converges to $f(x)$ almost everywhere. This assertion complements and strengthens previously known results about universal Walsh series and Walsh null-series.
@article{IM2_1999_63_1_a1,
     author = {G. G. Gevorkyan and K. A. Navasardyan},
     title = {On {Walsh} series with monotone coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {37--55},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
AU  - K. A. Navasardyan
TI  - On Walsh series with monotone coefficients
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 37
EP  - 55
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a1/
LA  - en
ID  - IM2_1999_63_1_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%A K. A. Navasardyan
%T On Walsh series with monotone coefficients
%J Izvestiya. Mathematics 
%D 1999
%P 37-55
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a1/
%G en
%F IM2_1999_63_1_a1
G. G. Gevorkyan; K. A. Navasardyan. On Walsh series with monotone coefficients. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 37-55. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a1/

[1] Golubov B. I., Efimov A. F., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR | Zbl

[2] Gevorkian G. G., “On coefficients of null-series and on sets of uniqueness of trigonometric and Walsh systems”, Analysis Math., 14 (1988), 219–251 | DOI | MR | Zbl

[3] Ulyanov P. L., “Reshennye i nereshennye problemy teorii trigonometricheskikh i ortogonalnykh ryadov”, UMN, 19:1 (1964), 3–69 | MR

[4] Arutyunyan F. G., “Predstavlenie funktsii iz $L_p$, $0\leq p1$, trigonometricheskimi ryadami s bystro ubyvayuschimi koeffitsientami”, Izv. AN ArmSSR. Ser. matem., 19 (1984), 448–466 | MR | Zbl

[5] Pogosyan N. B., “O koeffitsientakh trigonometricheskikh nul-ryadov”, Analysis Math., 11 (1985), 139–177 | DOI | MR | Zbl

[6] Körner T. W., “Uniqueness for trigonometric series”, Annals of Math., 126 (1987), 1–34 | DOI | MR

[7] Navasardyan K. A., “O nul-ryadakh po dvoinoi sisteme Uolsha”, Izv. NAN Armenii. Ser. matem., 29:1 (1994), 59–78 | MR | Zbl

[8] Navasardian K. A., “Universal series by multiple Walsh system”, J. of Contemporary Math. Analysis, 30:5, 14–29 | Zbl

[9] Menshov D. E., “Ob universalnykh trigonometricheskikh ryadakh”, DAN SSSR, 49 (1945), 79–82 | MR

[10] Menshov D. E., “O chastnykh summakh trigonometricheskikh ryadov”, Matem. sb., 20(62) (1947), 197–237

[11] Talalyan A. A., “Trigonometricheskie ryady, universalnye otnositelno podryadov”, Izv. AN SSSR. Ser. matem., 27:3 (1963), 621–660 | MR | Zbl

[12] Mushegyan G. M., “Ob universalnykh ryadakh otnositelno perestanovok”, Izv. AN Arm. SSR. Ser. matem., 12:4 (1977), 278–302 | MR | Zbl

[13] Pogosyan N. B., “Predstavlenie izmerimykh funktsii ortogonalnymi ryadami”, Matem. sb., 98(140) (1975), 102–112 | MR | Zbl

[14] Talalyan A. A., “Predstavlenie izmerimykh funktsii ryadami”, UMN, 15:5 (1960), 77–141 | MR | Zbl

[15] Talalyan A. A., Ovsepyan R. I., “Teoremy D. E. Menshova o predstavlenii i ikh vliyanie na razvitie metricheskoi teorii funktsii”, UMN, 47:5 (1992), 15–42 | MR

[16] Pogosyan N. B., “Ob universalnykh ryadakh Fure”, UMN, 38:1 (1983), 185–186 | MR | Zbl

[17] Timan M. F., Rubinshtein A. I., “O vlozhenii klassov funktsii, opredelennykh na nul-mernykh gruppakh”, Izv. VUZov. Matematika, 1980, no. 8, 66–76 | MR | Zbl

[18] Moricz F., “On Walsh series with coefficients tending monotonically to zero”, Acta Math. Acad. Sci. Hung., 38:1–4 (1981), 183–189 | DOI | MR | Zbl

[19] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[20] Kachmazh S., Shteigauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[21] Arutyunyan F. G., “O ryadakh po sisteme Khaara”, Dokl. AN ArmSSR, 42:3 (1966), 134–140 | MR | Zbl

[22] Gundy R., “Martingale theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 124:2 (1966), 228–248 | DOI | MR | Zbl

[23] Chow Y. S., “Convergence Theorems of martingales”, Z. Wahrscheinlickeitstheorie und Verw. Gebiete, 1 (1962), 340–346 | DOI | MR