The image of the Galois group for some crystalline representations
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 1-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be the field of fractions of the ring $W=W(k)$ of Witt vectors, where $k$ is an algebraically closed field of characteristic $p>0$, and let $\Gamma=\operatorname{Gal}(\overline K/K)$. If $U$ is a $\Gamma$-invariant lattice in a continuous $\mathbb Q_p[\Gamma]$-module $V$ of finite dimension over $\mathbb Q_p$ and if the set of characters $S$ of the semisimple envelope of $U\otimes\mathbb F_p$ satisfies some additional assumptions, then one can associate to $U$ a function $n_U\colon S\times S\to\mathbb Z_{\geqslant 0}\cup\{\infty\}$ containing a considerable amount of information about the image $H_U$ of $\Gamma$ in $\operatorname{Aut}_{\mathbb Z_p}U$. In this paper we describe the set of functions arising from crystalline modules $V$ with Hodge–Tate weights in the interval $[0,p-2]$. Moreover, we explicitly express these functions in terms of the corresponding filtered modules. This is applied to the description of the image $H_{T(\mathcal G)}$, where $T(\mathcal G)$ is the Tate module of a 1-dimensional formal group $\mathcal G$ over $W(k)$ of finite height.
@article{IM2_1999_63_1_a0,
     author = {V. A. Abrashkin},
     title = {The image of the {Galois} group for some crystalline representations},
     journal = {Izvestiya. Mathematics },
     pages = {1--36},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a0/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - The image of the Galois group for some crystalline representations
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1
EP  - 36
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a0/
LA  - en
ID  - IM2_1999_63_1_a0
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T The image of the Galois group for some crystalline representations
%J Izvestiya. Mathematics 
%D 1999
%P 1-36
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a0/
%G en
%F IM2_1999_63_1_a0
V. A. Abrashkin. The image of the Galois group for some crystalline representations. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 1-36. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a0/