The image of the Galois group for some crystalline representations
Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 1-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be the field of fractions of the ring $W=W(k)$ of Witt vectors, where $k$ is an algebraically closed field of characteristic $p>0$, and let $\Gamma=\operatorname{Gal}(\overline K/K)$. If $U$ is a $\Gamma$-invariant lattice in a continuous $\mathbb Q_p[\Gamma]$-module $V$ of finite dimension over $\mathbb Q_p$ and if the set of characters $S$ of the semisimple envelope of $U\otimes\mathbb F_p$ satisfies some additional assumptions, then one can associate to $U$ a function $n_U\colon S\times S\to\mathbb Z_{\geqslant 0}\cup\{\infty\}$ containing a considerable amount of information about the image $H_U$ of $\Gamma$ in $\operatorname{Aut}_{\mathbb Z_p}U$. In this paper we describe the set of functions arising from crystalline modules $V$ with Hodge–Tate weights in the interval $[0,p-2]$. Moreover, we explicitly express these functions in terms of the corresponding filtered modules. This is applied to the description of the image $H_{T(\mathcal G)}$, where $T(\mathcal G)$ is the Tate module of a 1-dimensional formal group $\mathcal G$ over $W(k)$ of finite height.
@article{IM2_1999_63_1_a0,
     author = {V. A. Abrashkin},
     title = {The image of the {Galois} group for some crystalline representations},
     journal = {Izvestiya. Mathematics },
     pages = {1--36},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a0/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - The image of the Galois group for some crystalline representations
JO  - Izvestiya. Mathematics 
PY  - 1999
SP  - 1
EP  - 36
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a0/
LA  - en
ID  - IM2_1999_63_1_a0
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T The image of the Galois group for some crystalline representations
%J Izvestiya. Mathematics 
%D 1999
%P 1-36
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a0/
%G en
%F IM2_1999_63_1_a0
V. A. Abrashkin. The image of the Galois group for some crystalline representations. Izvestiya. Mathematics , Tome 63 (1999) no. 1, pp. 1-36. http://geodesic.mathdoc.fr/item/IM2_1999_63_1_a0/

[1] Abrashkin V. A., “Modifikatsiya funktora Fontena–Laffe”, Izv. AN SSSR. Ser. matem., 53:3 (1989), 451–497 | MR | Zbl

[2] Abrashkin V. A., “Modulyarnye predstavleniya gruppy Galua lokalnogo polya i obobschenie gipotezy Shafarevicha”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1135–1182 | MR | Zbl

[3] Benua D. G., “O $p$-adicheskikh predstavleniyakh, voznikayuschikh iz formalnykh grupp”, Tr. S.-Peterb. matem. ob-va, 3 (1995), 135–139 | MR | Zbl

[4] Benua D. G., Vostokov S. V., “Normennoe sparivanie v formalnykh gruppakh i predstavleniya Galua”, Algebra i analiz, 2:6 (1990), 69–97 | MR | Zbl

[5] Fontaine J. -M., “Points d'ordre fini d'un groupe formel sur une extension non ramifie de $\mathbb Z_p$”, Bull. Soc. math. France, Memoire 37, 1974, 75–79 | MR | Zbl

[6] Fontaine J. -M., “Groupes $p$-divisibles sur les corps locaux”, Asterisque, 47–48, Soc. Math. de France, Paris, 1977 | MR

[7] Fontaine J. -M., Laffaille G., “Construction de representations $p$-adiques”, Ann. Sci. E.N.S., Ser. 15, 1982, no. 4, 547–608 | MR | Zbl

[8] Nakamura T., “On torsion points of formal groups over a ring of Witt vectors”, Math. Z., 193 (1986), 397–404 | DOI | MR | Zbl

[9] Wintenberger J. -P., “Un scindage de la filtration de Hodge pour certaines varietes algebriques sur le corps locaux”, Annals of Math., 119 (1984), 511–548 | DOI | MR | Zbl