Fundamental solutions of pseudodifferential equations connected with $p$-adic quadratic forms
Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1169-1188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and study fundamental solutions corresponding to certain classes of pseudodifferential operators with symbols of the form $|h(\xi )|_p^\alpha$, $\alpha>0$, where $h(\xi)$, $\xi=(\xi_1,\dots,\xi_n)$, is a non-degenerate $p$-adic quadratic form.
@article{IM2_1998_62_6_a4,
     author = {A. N. Kochubei},
     title = {Fundamental solutions of pseudodifferential equations connected with $p$-adic quadratic forms},
     journal = {Izvestiya. Mathematics },
     pages = {1169--1188},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a4/}
}
TY  - JOUR
AU  - A. N. Kochubei
TI  - Fundamental solutions of pseudodifferential equations connected with $p$-adic quadratic forms
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 1169
EP  - 1188
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a4/
LA  - en
ID  - IM2_1998_62_6_a4
ER  - 
%0 Journal Article
%A A. N. Kochubei
%T Fundamental solutions of pseudodifferential equations connected with $p$-adic quadratic forms
%J Izvestiya. Mathematics 
%D 1998
%P 1169-1188
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a4/
%G en
%F IM2_1998_62_6_a4
A. N. Kochubei. Fundamental solutions of pseudodifferential equations connected with $p$-adic quadratic forms. Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1169-1188. http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a4/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Khrennikov A. Yu., $p$-adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl

[3] Ruelle P., Thiran E., Verstegen D., Weyers J., “Quantum mechanics on $p$-adic fields”, J. Math. Phys., 30:12 (1989), 2854–2874 | DOI | MR | Zbl

[4] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1988), 17–53 | MR | Zbl

[5] Haran S., “Quantization and symbolic calculus over the $p$-adic numbers”, Ann. Inst. Fourier, 43:4 (1993), 997–1053 | MR | Zbl

[6] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[7] Serr Zh.-P., Kurs arifmetiki, Mir, M., 1972 | MR | Zbl

[8] Kochubei A. N., “O $p$-adicheskikh funktsiyakh Grina”, TMF, 96:1 (1993), 123–139 | MR | Zbl

[9] Vladimirov V. S., Volovich I. V., “$p$-adic quantum mechanics”, Comm. Math. Phys., 123:4 (1989), 659–676 | DOI | MR | Zbl

[10] Khrennikov A. Yu., “Fundamentalnye resheniya nad polem $p$-adicheskikh chisel”, Algebra i analiz, 4:3 (1992), 248–266 | MR | Zbl

[11] Kochubei A. N., “A Schrödinger type equation over the field of $p$-adic numbers”, J. Math. Phys., 34:8 (1993), 3420–3428 | DOI | MR | Zbl

[12] Kochubei A. N., “Parabolicheskie uravneniya nad polem $p$-adicheskikh chisel”, Izv. AN SSSR, 55:6 (1991), 1312–1330

[13] Algebraicheskaya teoriya chisel, eds. Dzh. Kassels, A. Frelikh, Mir, M., 1969 | MR

[14] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[15] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[16] Sally P. J., Taibleson M. H., “Special functions on locally compact fields”, Acta Math., 116:3–4 (1966), 279–309 | DOI | MR | Zbl

[17] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[18] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[19] Saloff-Coste L., “Opératéurs pseudo-différentiels sur certains groupes totalement discontinus”, Studia Math., 83:3 (1986), 205–228 | MR | Zbl

[20] Artin E., Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl

[21] Narkiewicz W., Elementary and analytic theory of algebraic numbers, PWN, Warszawa, 1974 | MR | Zbl

[22] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988 | Zbl

[23] Taibleson M. H., “The existence of natural field structures for finite dimensional vector spaces over local fields”, Pacif. J. Math., 63:2 (1976), 545–551 | MR | Zbl

[24] Lempel A., Weinberger M. J., “Self-complementary normal bases in finite fields”, SIAM J. Discr. Math., 1 (1988), 193–198 | DOI | MR | Zbl

[25] Davenport H., “Bases for finite fields”, J. London Math. Soc., 43:1 (1968), 21–39 | DOI | MR | Zbl

[26] Lempel A., “Characterization and synthesis of self-complementary normal bases in finite fields”, Linear Algebra Appl., 98 (1988), 331–346 | DOI | MR | Zbl

[27] Ono T., “Gauss transform and zeta-functions”, Ann. Math., 91:2 (1970), 332–361 | DOI | MR | Zbl

[28] Graev M. I., Prokhorova R. I., “Odnorodnye obobschennye funktsii v vektornom prostranstve nad lokalnym nearkhimedovym polem, svyazannye s kvadratichnoi formoi”, Funkts. analiz i ego prilozh., 6:3 (1972), 70–71 | MR | Zbl