Approximations with a~sign-sensitive weight: existence and uniqueness theorems
Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1127-1168.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximations with a sign-sensitive weight generally take into account both the absolute value of the error of approximation and its sign. We study the problems of existence, uniqueness and plurality for the element of best uniform approximation with a given sign-sensitive weight $p=(p_-,p_+)$ by functions of a given family $L$ on an interval $\Delta$. We also study these problems for approximations in normed linear spaces $\mathcal L$ by elements of a family $L\subset\mathcal L$, where the deviation of an element $x$ from another element $y$ is measured by the value $P(x-y)$ of some non-negative sublinear functional $P$. A very important role is played by the rigidity and freedom of the systems $(p,L)$ and $(P;L)$. These notions are also studied in the paper, with special attention being given to the case of Chebyshev subspaces $L$.
@article{IM2_1998_62_6_a3,
     author = {E. P. Dolzhenko and E. A. Sevast'yanov},
     title = {Approximations with a~sign-sensitive weight: existence and uniqueness theorems},
     journal = {Izvestiya. Mathematics },
     pages = {1127--1168},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a3/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - E. A. Sevast'yanov
TI  - Approximations with a~sign-sensitive weight: existence and uniqueness theorems
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 1127
EP  - 1168
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a3/
LA  - en
ID  - IM2_1998_62_6_a3
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A E. A. Sevast'yanov
%T Approximations with a~sign-sensitive weight: existence and uniqueness theorems
%J Izvestiya. Mathematics 
%D 1998
%P 1127-1168
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a3/
%G en
%F IM2_1998_62_6_a3
E. P. Dolzhenko; E. A. Sevast'yanov. Approximations with a~sign-sensitive weight: existence and uniqueness theorems. Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1127-1168. http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a3/

[1] Dolzhenko E. P., Sevastyanov E. A., “Approksimatsiya so znakochuvstvitelnym vesom”, Rossiiskaya konf. po nelineinomu analizu (Makhachkala, 1992), DGU, Makhachkala, 1994, 42–43

[2] Dolzhenko E. P., “Znakochuvstvitelnye approksimatsii chebyshevskimi podprostranstvami”, Tez. dokl. shkoly “Teoriya funktsii. Differentsialnye uravneniya v matematicheskom modelirovanii” (Voronezh, 25 yanvarya – 3 fevralya 1993 g.), VGU, Voronezh, 1993, 50

[3] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii (prostranstvo znakochuvstvitelnykh vesov, zhestkost i svoboda sistemy)”, Dokl. AN, 332:6 (1993), 686–689 | MR | Zbl

[4] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii (voprosy edinstvennosti i ustoichivosti)”, Dokl. AN, 333:1 (1993), 5–7 | MR | Zbl

[5] Dolzhenko E. P., Sevastyanov E. A., “Metricheskie prostranstva polunepreryvnykh funktsii”, Matem. zametki, 55:3 (1994), 48–58 | MR | Zbl

[6] Dolzhenko E. P., Sevastyanov E. A., “Ob opredelenii chebyshevskikh uzhei”, Vestn. MGU. Matem. Mekh., 1994, no. 3, 49–59 | MR | Zbl

[7] Dolzhenko E. P., “Znakochuvstvitelnye approksimatsii”, Tez. dokl. “Konstruktivnaya teoriya funktsii i ee prilozheniya” (Makhachkala, 1994), DGU, Makhachkala, 1994, 38–40

[8] Dolzhenko E. P., “Znakochuvstvitelnye approksimatsii”, Voronezhskaya zimnyaya matematicheskaya shkola “Sovremennye metody teorii funktsii i smezhnye problemy prikladnoi matematiki i mekhaniki”, Tez. dokl. (1995), VGU, Voronezh, 1995, 89

[9] Dolzhenko E. P., “Znakochuvstvitelnye approksimatsii”, Mezhdunarodnaya konferentsiya “Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz”, posv. 90-letiyu akad. S. M. Nikolskogo, Tez. dokl., PAIMS, M., 1995, 114–116

[10] Sevastyanov E. A., “O suschestvovanii i ustoichivosti chebyshevskikh uzhei”, Konstruktivnaya teoriya funktsii i ee prilozheniya, Tez. dokl. (Makhachkala, 1994), DGU, Makhachkala, 1994, 102–104

[11] Minkowski H., “Theorie der konvexen Körper, insbesondere Begrundung ihres Oberflachenbegriffs”, Ges. Abh., 2 (1911), 131–229

[12] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[13] Sendov B., Khausdorfovy priblizheniya, Izd-vo Bolgarskoi AN, Sofiya, 1979 | Zbl

[14] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[15] Sevastyanov E. A., “Teorema Khaara i ee obobschenie dlya znakochuvstvitelnykh approksimatsii”, Mezhdunarodnaya konferentsiya “Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz”, posv. 90-letiyu akad. S. M. Nikolskogo, Tez. dokl., PAIMS, M., 1995, 244–245

[16] Sevastyanov E. A., “Problema edinstvennosti elementov nailuchshego priblizheniya dlya znkochuvstvitelnykh approksimatsii”, Teoriya funktsii i ee prilozheniya, Tez. dokl., shkola-konferentsiya (15–22 iyunya 1995 g., Kazan), Izd-vo Kazanskogo fonda “Matematika”, Kazan, 1995, 57–60

[17] Sevastyanov E. A., “O probleme Khaara dlya znakochuvstvitelnykh approksimatsii”, Matem. sb., 188:2 (1997), 95–128 | MR | Zbl

[18] Bernshtein S. N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, ONTI, M.–L., 1937

[19] Chebyshev P. L., “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, Polnoe sobranie sochinenii, T. 2, Izd-vo AN SSSR, M.–L., 1948, 151–235

[20] Vallée–Poussin Ch.-J., Lecon sur l'approximation des fonctions d'une variable réelle, Gauthier–Villars, Paris, 1919

[21] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR

[22] Babenko V. F., “Nesimmetrichnye priblizheniya v prostranstvakh summiruemykh funktsii”, Ukr. matem. zhurn., 34:4 (1982), 409–419 | MR

[23] Simonova I. E., Simonov B. V., “O polinome nailuchshego nesimmetrichnogo priblizheniya v prostranstve Orlicha”, Izv. Vuzov. Ser. matem., 1993, no. 11 (378), 50–56 | MR | Zbl