A~group-theoretical property of the ramification filtration
Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1073-1094
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma(p)$ be the Galois group of the maximal $p$-extension of a complete discrete valuation field with a perfect residue field of characteristic $p>0$. If $v_0>-1$ and
$\Gamma(p)^{(v_0)}$ is the ramification subgroup of $\Gamma(p)$ in the upper numbering, we prove that any closed non-open finitely generated subgroup of the quotient
$\Gamma(p)/\Gamma(p)^{(v_0)}$ is a free pro-$p$-group. In particular, this quotient has no torsion and no non-trivial commuting elements.
@article{IM2_1998_62_6_a0,
author = {V. A. Abrashkin},
title = {A~group-theoretical property of the ramification filtration},
journal = {Izvestiya. Mathematics },
pages = {1073--1094},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a0/}
}
V. A. Abrashkin. A~group-theoretical property of the ramification filtration. Izvestiya. Mathematics , Tome 62 (1998) no. 6, pp. 1073-1094. http://geodesic.mathdoc.fr/item/IM2_1998_62_6_a0/