Properties of expansion systems similar to orthogonal ones
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 1035-1054

Voir la notice de l'article provenant de la source Math-Net.Ru

We define expansion systems in a Hilbert space that are similar to orthogonal ones, for which an analogue of Parseval's equality, the extremal property of expansion coefficients, and analogues of the Riesz-Fischer theorem and Bessel's identity (estimating the accuracy of approximation) are valid. In the case when the Hilbert space is the Lebesgue space $L^2$ we prove an analogue of the Men'shov–Rademacher theorem on almost everywhere convergence and analogues of the theorems of Orlicz and Tandori on unconditional convergence. We suggest constructions and examples of non-orthogonal expansion systems similar to orthogonal ones.
@article{IM2_1998_62_5_a7,
     author = {T. P. Lukashenko},
     title = {Properties of expansion systems similar to orthogonal ones},
     journal = {Izvestiya. Mathematics },
     pages = {1035--1054},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a7/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - Properties of expansion systems similar to orthogonal ones
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 1035
EP  - 1054
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a7/
LA  - en
ID  - IM2_1998_62_5_a7
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T Properties of expansion systems similar to orthogonal ones
%J Izvestiya. Mathematics 
%D 1998
%P 1035-1054
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a7/
%G en
%F IM2_1998_62_5_a7
T. P. Lukashenko. Properties of expansion systems similar to orthogonal ones. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 1035-1054. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a7/