The diffusion-buffer phenomenon in a~mathematical model of biology
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 985-1012
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Neumann problem for partial differential-difference equations with diffusion that models a predator-prey problem. Using infinite-dimensional normalization, we establish the diffusion-buffer phenomenon, which means that the system can have any number of stable spatially inhomogeneous cycles if its parameters are properly chosen.
@article{IM2_1998_62_5_a5,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {The diffusion-buffer phenomenon in a~mathematical model of biology},
journal = {Izvestiya. Mathematics },
pages = {985--1012},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/}
}
A. Yu. Kolesov; N. Kh. Rozov. The diffusion-buffer phenomenon in a~mathematical model of biology. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 985-1012. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/