The diffusion-buffer phenomenon in a~mathematical model of biology
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 985-1012.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Neumann problem for partial differential-difference equations with diffusion that models a predator-prey problem. Using infinite-dimensional normalization, we establish the diffusion-buffer phenomenon, which means that the system can have any number of stable spatially inhomogeneous cycles if its parameters are properly chosen.
@article{IM2_1998_62_5_a5,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The diffusion-buffer phenomenon in a~mathematical model of biology},
     journal = {Izvestiya. Mathematics },
     pages = {985--1012},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The diffusion-buffer phenomenon in a~mathematical model of biology
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 985
EP  - 1012
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/
LA  - en
ID  - IM2_1998_62_5_a5
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The diffusion-buffer phenomenon in a~mathematical model of biology
%J Izvestiya. Mathematics 
%D 1998
%P 985-1012
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/
%G en
%F IM2_1998_62_5_a5
A. Yu. Kolesov; N. Kh. Rozov. The diffusion-buffer phenomenon in a~mathematical model of biology. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 985-1012. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/

[1] Zakharov A. A., Kolesov Yu. S., “Prostranstvenno neodnorodnye rezhimy v zadache khischnik–zhertva”, Nelineinye kolebaniya i ekologiya, Yaroslavl, 1984, 3–15 | MR

[2] Kolesov A. Yu., “Suschestvovanie asimptoticheski bolshogo chisla ustoichivykh beguschikh voln v odnoi trekhmernoi sisteme parabolicheskikh uravnenii”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gorkii, 1986, 57–66 | MR | Zbl

[3] Kolesov A. Yu., “Avtokolebaniya singulyarno vozmuschennykh parabolicheskikh sistem pervoi stepeni negrubosti”, Matem. zametki, 49:5 (1991), 62–69 | MR | Zbl

[4] Kolesov A. Yu., “Bifurkatsiya periodicheskikh reshenii singulyarno vozmuschennykh parabolicheskikh sistem pervoi stepeni negrubosti”, Ukr. matem. zhurn., 42:8 (1990), 1037–1042 | MR

[5] Kolesov A. Yu., “Teoreticheskoe ob'yasnenie yavleniya diffuzionnoi bufernosti”, Modelirovanie dinamiki populyatsii, N. Novgorod, 1990, 35–38

[6] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR

[7] Kolesov Yu. S., “Matematicheskie modeli ekologii”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1979, 3–40 | MR | Zbl

[8] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, UMN, 17:3 (1962), 3–146 | MR | Zbl

[9] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[10] Kolesov Yu. S., Shvitra D. I., Avtokolebaniya v sistemakh s zapazdyvaniem, Mokslas, Vilnyus, 1979 | MR | Zbl

[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[12] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1976, 114–129 | MR

[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[14] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[15] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[16] Kolesov A. Yu., Kolesov Yu. S., “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIRAN, 199 (1993), 3–124 | MR | Zbl