The diffusion-buffer phenomenon in a~mathematical model of biology
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 985-1012

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Neumann problem for partial differential-difference equations with diffusion that models a predator-prey problem. Using infinite-dimensional normalization, we establish the diffusion-buffer phenomenon, which means that the system can have any number of stable spatially inhomogeneous cycles if its parameters are properly chosen.
@article{IM2_1998_62_5_a5,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The diffusion-buffer phenomenon in a~mathematical model of biology},
     journal = {Izvestiya. Mathematics },
     pages = {985--1012},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The diffusion-buffer phenomenon in a~mathematical model of biology
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 985
EP  - 1012
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/
LA  - en
ID  - IM2_1998_62_5_a5
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The diffusion-buffer phenomenon in a~mathematical model of biology
%J Izvestiya. Mathematics 
%D 1998
%P 985-1012
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/
%G en
%F IM2_1998_62_5_a5
A. Yu. Kolesov; N. Kh. Rozov. The diffusion-buffer phenomenon in a~mathematical model of biology. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 985-1012. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a5/