Regularity of infinite exponentials
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 901-928
Voir la notice de l'article provenant de la source Math-Net.Ru
If a sequence $\{a_k\}_{k=0}^{\infty}$ is such that $a_k\ne 0$, $k=0,1,2,\dots$, and $\varlimsup_{n\to\infty}|a_n|=\bar a\infty$, then
$$
f(z)=\lim_{n\to\infty}a_0z^{a_1z^{a_2z\cdots^{a_{n-1}z^{a_n}}}}
$$
is regular in a domain $U$ such that $D\cap e^K\subset U$, where
$D=\{z\colon|\arg z|\pi\}$ and $e^K$ is the image of
$K=\biggl\{w:|w|\dfrac {1}{e\bar a}\biggr\}$ under the map $z=e^w$.
@article{IM2_1998_62_5_a1,
author = {A. P. Bulanov},
title = {Regularity of infinite exponentials},
journal = {Izvestiya. Mathematics },
pages = {901--928},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/}
}
A. P. Bulanov. Regularity of infinite exponentials. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 901-928. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/