Regularity of infinite exponentials
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 901-928.

Voir la notice de l'article provenant de la source Math-Net.Ru

If a sequence $\{a_k\}_{k=0}^{\infty}$ is such that $a_k\ne 0$, $k=0,1,2,\dots$, and $\varlimsup_{n\to\infty}|a_n|=\bar a\infty$, then $$ f(z)=\lim_{n\to\infty}a_0z^{a_1z^{a_2z\cdots^{a_{n-1}z^{a_n}}}} $$ is regular in a domain $U$ such that $D\cap e^K\subset U$, where $D=\{z\colon|\arg z|\pi\}$ and $e^K$ is the image of $K=\biggl\{w:|w|\dfrac {1}{e\bar a}\biggr\}$ under the map $z=e^w$.
@article{IM2_1998_62_5_a1,
     author = {A. P. Bulanov},
     title = {Regularity of infinite exponentials},
     journal = {Izvestiya. Mathematics },
     pages = {901--928},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Regularity of infinite exponentials
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 901
EP  - 928
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/
LA  - en
ID  - IM2_1998_62_5_a1
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Regularity of infinite exponentials
%J Izvestiya. Mathematics 
%D 1998
%P 901-928
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/
%G en
%F IM2_1998_62_5_a1
A. P. Bulanov. Regularity of infinite exponentials. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 901-928. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/

[1] Barrow D. F., “Infinite exponentials”, Amer. Math. Monthly, XLII (1936), 150–160 | DOI | MR

[2] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968 | MR

[3] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, M., 1963

[4] Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[5] Euler Leonhard, “De formulis exponentialibus replicatis”, Acta Academiae Scientiarum Petropolitanae, 1 (1778), 38–60

[6] Eisenstein G., “Entwicklung von $\alpha ^{\alpha ^{\alpha '''}}$”, Crelle's J. für die reine und Angewandte Mathematik, 28 (1844), 49–52 | Zbl

[7] Seidel Ludwig, “Über die Grenzwerthe eines unendlichen Patenzausdruckes der Form $x^{x^{x'''}}$”, Abhandlungen der wissenchaften, 11 (1873), 1–10

[8] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1966 | Zbl

[9] Lucas Edward, Theoric des nombres, V. I, Gauthier-Villars, Peris, 1891

[10] Selfridge J. L., “Factors of Fermat nambers”, Math. Tables and other Aids Comput., 7:44 (1953), 274–275

[11] Wright E. M., “A prime-representing function”, Amer. Math. Monthly, 58 (1951), 617–618 | DOI | MR

[12] Wright E. M., “A class of representing functions”, J. of the London Math. Soc., 29:113 (1952), 63–71 | MR

[13] Mills W. H., “A prime-representing function”, Bull. Amer. Math. Soc., 53 (1947), 604 | DOI | MR | Zbl

[14] Niven Ivan, “Functions which represent prime nambers”, Proc. Amer. Math. Soc., 2:5 (1951), 753–755 | DOI | MR | Zbl

[15] Bender Carl M., Orszag Steven A., Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 1978 | MR | Zbl

[16] Bulanov A. P., “O skhodimosti kratnykh stepenei”, Teoriya funktsii i priblizhenii, Tr. 3-ei Saratovskoi zimnei shkoly. Ch. 1 (27 yanvarya – 7 fevralya 1986 g.), Saratovskii universitet, 1987, 3–11 | MR | Zbl

[17] Bulanov A. P., “Kratnye stepeni i lokalnye priblizheniya”, Tr. MIAN SSSR, 180, Nauka, M., 1987, 65–67

[18] Knoebel Arthur, “Exponentials reiterated”, Amer. Math. Monthly, 88:4 (1981), 235–252 | DOI | MR | Zbl

[19] Kuzmin R. O., “Ob odnom novom klasse transtsendentnykh chisel”, Izv. AN SSSR. OFMN, 1930, no. 6, 585–597