Regularity of infinite exponentials
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 901-928

Voir la notice de l'article provenant de la source Math-Net.Ru

If a sequence $\{a_k\}_{k=0}^{\infty}$ is such that $a_k\ne 0$, $k=0,1,2,\dots$, and $\varlimsup_{n\to\infty}|a_n|=\bar a\infty$, then $$ f(z)=\lim_{n\to\infty}a_0z^{a_1z^{a_2z\cdots^{a_{n-1}z^{a_n}}}} $$ is regular in a domain $U$ such that $D\cap e^K\subset U$, where $D=\{z\colon|\arg z|\pi\}$ and $e^K$ is the image of $K=\biggl\{w:|w|\dfrac {1}{e\bar a}\biggr\}$ under the map $z=e^w$.
@article{IM2_1998_62_5_a1,
     author = {A. P. Bulanov},
     title = {Regularity of infinite exponentials},
     journal = {Izvestiya. Mathematics },
     pages = {901--928},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Regularity of infinite exponentials
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 901
EP  - 928
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/
LA  - en
ID  - IM2_1998_62_5_a1
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Regularity of infinite exponentials
%J Izvestiya. Mathematics 
%D 1998
%P 901-928
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/
%G en
%F IM2_1998_62_5_a1
A. P. Bulanov. Regularity of infinite exponentials. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 901-928. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a1/