An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers
Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 723-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study linear forms $\Lambda=b_1\ln\alpha_1+\dots+b_n\ln\alpha_n$ with rational integer coefficients $b_j$ ($b_n\ne 0$, $n\geqslant 2$), where the $\alpha_j$ are algebraic numbers satisfying the so-called strong independence condition. In standard notation, we prove an explicit estimate of the form $$ |\Lambda|>\exp\bigl(-C^nD^{n+2}\Omega\ln\bigl(C^nD^{n+2}\Omega'\bigr)\ln(eB)\bigr). $$ Its novel feature is that it contains no factors of the form $n^n$.
@article{IM2_1998_62_4_a3,
     author = {E. M. Matveev},
     title = {An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers},
     journal = {Izvestiya. Mathematics },
     pages = {723--772},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a3/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 723
EP  - 772
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a3/
LA  - en
ID  - IM2_1998_62_4_a3
ER  - 
%0 Journal Article
%A E. M. Matveev
%T An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers
%J Izvestiya. Mathematics 
%D 1998
%P 723-772
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a3/
%G en
%F IM2_1998_62_4_a3
E. M. Matveev. An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers. Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 723-772. http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a3/

[1] Baker A., “The theory of linear forms in logarithms”, Transcendence theory: advances and applications, eds. A. Baker, D. W. Masser, Academic press, London, 1977, 1–27 | MR

[2] Loxton J. H., van der Poorten A. J., “Computing the effectively computable bound in Baker's inequality for linear forms in logarithms”, Bull. Austral. Math. Soc., 15 (1976), 33–57 | DOI | MR | Zbl

[3] Baker A., Stark H. M., “On a fundamental inequality in number theory”, Ann. of Math., 94 (1971), 190–199 | DOI | MR | Zbl

[4] Waldschmidt M., “A lower bound for linear forms in logarithms”, Acta Arithm., 37 (1980), 257–283 | MR | Zbl

[5] Gelfond A. O., Transtsendentnye i algebraicheskie chisla, Gostekhizdat, M., 1952

[6] Shorey T. N., “On linear forms in the logarithms of algebraic numbers”, Acta Arithm., 30 (1976), 27–42 | MR | Zbl

[7] Feldman N. I., “Ob otsenke modulya lineinoi formy ot logarifmov nekotorykh algebraicheskikh chisel”, Matem. zametki, 2:3 (1967), 245–256 | MR | Zbl

[8] Matveev E. M., “Lineinye formy ot znachenii $G$-funktsii i diofantovy uravneniya”, Matem. sb., 117:3 (1982), 379–396 | MR | Zbl

[9] Stewart C. L., Yu Kunrui, “On the $abc$ conjecture”, Math. Ann., 291 (1991), 225–230 | DOI | MR | Zbl

[10] De Weger B. M. M., “The weighted sum of two $S$-units being a square”, Indag. Math., 1:2 (1990), 243–262 | DOI | MR | Zbl

[11] Matveev E. M., “Otsenka lineinoi formy ot logarifmov algebraicheskikh chisel”, Tez. dokl. vsesoyuzn. konf. “Teoriya transtsendentnykh chisel i ee prilozheniya” (Moskva, 2–4 fevr. 1983), Izd-vo MGU, M., 1983

[12] Loxton J. H., Mignotte M., van der Poorten A. J., Waldschmidt M., “A lower bound for linear forms in the logarithms of algebraic numbers”, C. R. Math. Rep. Acad. Sci. Canada, 11 (1987), 119–124 | MR | Zbl

[13] Blass J., Glass A. M. W., Manski D. K., Meronk D. B., Steiner R. P., “Constants for lower bounds for linear forms in the logarithms of algebraic numbers. I; II”, Acta Arithm., 55 (1990), 1–14 ; 15–22 ; Corrigenda, Acta Arithm., 65 (1993), 383 | MR | Zbl | MR | MR | Zbl

[14] Wüstholz G., “A new approach to Baker's theorem on linear forms in logarithms, III”, New advances in transcendence theory, ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, 399–410 | MR

[15] Philippon P., Waldschmidt M., “Lower bounds for linear forms in logarithms”, New advances in transcendence theory, ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, 280–312 | MR

[16] Mignotte M., Waldschmidt M., “Linear forms in two logarithms and Schneider's method, II”, Acta Arithm., 53 (1989), 251–287 | MR | Zbl

[17] Waldschmidt M., “Minorations de combinaisons linéaires de logarithmes de nombres algébriques”, Canad. J. Math., 45:1 (1993), 176–224 | MR | Zbl

[18] Baker A., Wüstholz G., “Logarithmic forms and group varieties”, J. reine angew. Math., 442 (1993), 19–62 | MR | Zbl

[19] Bugeaud Y., Györy K., “Bounds for the solutions of Thue-Mahler equations and norm form equations”, Acta Arithm., 74 (1996), 273–292 | MR | Zbl

[20] Matveev E. M., “O lineinykh i multiplikativnykh sootnosheniyakh”, Matem. sb., 184:4 (1993), 23–40 | Zbl

[21] Leng S., Osnovy diofantovoi geometrii, Mir, M., 1986 | MR | Zbl

[22] Feldman N. I., “Uluchshenie otsenki lineinoi formy ot logarifmov algebraicheskikh chisel”, Matem. sb., 77:3 (1968), 423–436 | MR | Zbl

[23] Van der Poorten A. J., “On Baker's inequality for linear forms in logarithms”, Math. Proc. Cambridge Philos. Soc., 80 (1976), 233–248 | DOI | MR | Zbl

[24] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[25] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961

[26] Bombieri E., Vaaler J., “On Siegel's Lemma”, Invent. Math., 73 (1983), 11–32 ; Addendum, Invent. Math., 75 (1984), 377 | DOI | MR | Zbl | DOI | MR

[27] Matveev E. M., “Ob arifmeticheskikh svoistvakh znachenii obobschennykh binomialnykh mnogochlenov”, Matem. zametki, 54:4 (1993), 6–81

[28] Feldman N. I., “Effektivnoe stepennoe usilenie teoremy Liuvillya”, Izv. AN SSSR. Ser. matem., 35:5 (1972), 973–990