An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers
Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 723-772
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study linear forms $\Lambda=b_1\ln\alpha_1+\dots+b_n\ln\alpha_n$ with rational integer coefficients $b_j$ ($b_n\ne 0$, $n\geqslant 2$), where the $\alpha_j$ are algebraic numbers satisfying the so-called strong independence condition. In standard notation, we prove an explicit estimate of the form
$$
|\Lambda|>\exp\bigl(-C^nD^{n+2}\Omega\ln\bigl(C^nD^{n+2}\Omega'\bigr)\ln(eB)\bigr).
$$
Its novel feature is that it contains no factors of the form $n^n$.
@article{IM2_1998_62_4_a3,
author = {E. M. Matveev},
title = {An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers},
journal = {Izvestiya. Mathematics },
pages = {723--772},
publisher = {mathdoc},
volume = {62},
number = {4},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a3/}
}
TY - JOUR AU - E. M. Matveev TI - An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers JO - Izvestiya. Mathematics PY - 1998 SP - 723 EP - 772 VL - 62 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a3/ LA - en ID - IM2_1998_62_4_a3 ER -
E. M. Matveev. An explicit lower bound for a~homogeneous rational linear form in logarithms of algebraic numbers. Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 723-772. http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a3/