Real algebraic GM$\mathbb Z$-surfaces
Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 695-721

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove necessary and sufficient conditions for a real algebraic surface to be a $\operatorname{GM}\mathbb Z$-surface. We calculate the Neron–Severi group $\operatorname{NS}(X)$, the Brauer group $\operatorname{Br}(X)$ and the algebraic cohomology group $H_a^1(X(\mathbb R),\mathbb F_2)$, where $X$ is a real projective surface. We also prove Nikulin's congruence for an arbitrary orientable $M$-surface
@article{IM2_1998_62_4_a2,
     author = {V. A. Krasnov},
     title = {Real algebraic {GM}$\mathbb Z$-surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {695--721},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a2/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real algebraic GM$\mathbb Z$-surfaces
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 695
EP  - 721
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a2/
LA  - en
ID  - IM2_1998_62_4_a2
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real algebraic GM$\mathbb Z$-surfaces
%J Izvestiya. Mathematics 
%D 1998
%P 695-721
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a2/
%G en
%F IM2_1998_62_4_a2
V. A. Krasnov. Real algebraic GM$\mathbb Z$-surfaces. Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 695-721. http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a2/