Lie algebras over operads and their applications in homotopy theory
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 549-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the development of algebraic devices that are necessary for describing the homotopy groups of topological spaces. As shown in the note [1], the notion of a Lie algebra over the operad $E_\infty$ must be used for this purpose. Here we consider this notion in more detail, prove its most important properties and clarify the question about the algebraic structure on the homotopy groups of topological spaces. In particular, we show that the homotopy groups of a topological space possess the structure of a Lie $E_\infty$-algebra which determines the homotopy type of the space in the simply-connected case. Since the notion of an operad is analogous to that of algebra, we begin with recalling the notions of algebra and coalgebra and reviewing the main constructions over them. Then we transfer these constructions to the operad case and use them to investigate the structure of Lie algebras and coalgebras over an operad.
@article{IM2_1998_62_3_a4,
     author = {V. A. Smirnov},
     title = {Lie algebras over operads and their applications in homotopy theory},
     journal = {Izvestiya. Mathematics },
     pages = {549--580},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a4/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - Lie algebras over operads and their applications in homotopy theory
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 549
EP  - 580
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a4/
LA  - en
ID  - IM2_1998_62_3_a4
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T Lie algebras over operads and their applications in homotopy theory
%J Izvestiya. Mathematics 
%D 1998
%P 549-580
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a4/
%G en
%F IM2_1998_62_3_a4
V. A. Smirnov. Lie algebras over operads and their applications in homotopy theory. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 549-580. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a4/

[1] Smirnov V. A., “$E_\infty $-struktury na gomotopicheskikh gruppakh”, Matem. zametki, 61:1 (1997), 152–156 | MR | Zbl

[2] Brown E. H., “Twisted tensor products”, Ann. of Math., 69 (1959), 223–246 | DOI | MR | Zbl

[3] Gugenheim V. K. A. M., Lambe L. A., Stasheff J. D., “Perturbation Theory in Differential Homological Algebra”, Ill. J. Math., 35:3 (1991), 357–373 | MR | Zbl

[4] Smirnov V. A., “Gomologii skreschennykh tenzornykh proizvedenii”, DAN SSSR, 222:5 (1975), 1041–1044 | MR | Zbl

[5] Quillen D., “Rational homotopy theory”, Ann. of Math., 90:2 (1969), 205–295 | DOI | MR | Zbl

[6] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[7] May J. P., The Geometry of Iterated Loop Spaces, Lect. Notes in Math., 271, 1972 | MR | Zbl

[8] Smirnov V. A., “O kotsepnom komplekse topologicheskogo prostranstva”, Matem. sb., 115:1 (1981), 146–158 | MR | Zbl

[9] Stasheff J. D., “Homotopy associativity of H-spaces”, Trans. A.M.S., 108:2 (1963), 275–312 | DOI | MR | Zbl

[10] Kadeishvili T. V., “K teorii gomologii rassloennykh prostranstv”, UMN, 35 (1980), 183–188 | MR | Zbl

[11] Smirnov V. A., “Gomologii rassloennykh prostranstv”, UMN, 35:3 (1980), 227–230 | MR | Zbl

[12] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1302–1321 | MR | Zbl

[13] Smirnov V. A., “Vtorichnye operatsii v gomologiyakh operady $E$”, Izv. RAN. Ser. matem., 56:2 (1992), 449–468

[14] Smirnov V. A., “Funktsionalnye gomologicheskie operatsii i slabyi gomotopicheskii tip”, Matem. zametki, 45:5 (1989), 76–86 | MR

[15] Smirnov V. A., “Gomologii $B$-konstruktsii i ko-$B$-konstruktsii”, Izv. RAN. Ser. matem., 58:4 (1994), 80–96 | Zbl

[16] Bousfield A. K., Kan D. M., “The homotopy spectral sequence of a space with coefficients in a ring”, Topology, 11 (1972), 79–106 | DOI | MR

[17] Massey W. S., “Products in exact couples”, Ann. of Math., 59 (1954), 558–569 | DOI | MR | Zbl