Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1998_62_3_a3, author = {T. E. Panov}, title = {Calculation of {Hirzebruch} genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action}, journal = {Izvestiya. Mathematics }, pages = {515--548}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a3/} }
TY - JOUR AU - T. E. Panov TI - Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action JO - Izvestiya. Mathematics PY - 1998 SP - 515 EP - 548 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a3/ LA - en ID - IM2_1998_62_3_a3 ER -
T. E. Panov. Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 515-548. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a3/
[1] Atya M., Bott R., “Zametki o teoreme Lefshetsa o nepodvizhnoi tochke”, Matematika, 10:4 (1966), 101–139
[2] Bott R., Taubes C., “On the rigidity theorems of Witten”, J. of Amer. Math. Soc., 2 (1989), 137–186 | DOI | MR | Zbl
[3] Atya M., Zinger I., “Indeks ellipticheskikh operatorov, III”, UMN, 24:1(145) (1969), 127–182 | MR
[4] Bukhshtaber V. M., “Kharakter Chzhenya–Dolda v teorii kobordizmov, I”, Matem. sb., 83:4 (1970), 575–595 | MR | Zbl
[5] Bukhshtaber V. M., Novikov S. P., “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84:1 (1971), 81–118 | MR | Zbl
[6] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973
[7] Hirzebruch F., Berger T., Jung R., Manifolds and Modular Forms, Second Edition, Max-Planc-Institut für Mathematik, Bonn, 1994
[8] Kasparov G. G., “Invarianty klassicheskikh linzovykh mnogoobrazii v teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 33:4 (1969), 735–747 | MR | Zbl
[9] Krichever I. M., “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Matem. zametki, 47:2 (1990), 34–45 | MR
[10] Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Mathematics, 1326, ed. P. S. Landweber, Springer, Berlin–Heidelberg, 1988 | MR
[11] Mischenko A. S., “Mnogoobraziya s deistviem gruppy $\mathbf Z_p$ i nepodvizhnye tochki”, Matem. zametki, 4:4 (1968), 381–386 | MR | Zbl
[12] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31:4 (1967), 855–951 | MR | Zbl
[13] Novikov S. P., “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR. Ser. matem., 32:6 (1968), 1245–1263 | MR
[14] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26 (1987), 143–151 | DOI | MR | Zbl
[15] Panov T. E., “Ellipticheskii rod dlya mnogoobrazii s deistviem gruppy $\mathbb Z/p$”, UMN, 52:2 (1997), 181–182 | MR | Zbl