The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 493-513.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the operator of restriction of functions holomorphic in a ball or a polydisc to curves lying on the Shilov boundary. It turns out that any function with polynomial growth near the boundary has such a restriction if the position of the curve satisfies a certain condition: if the domain is a ball, then the curve must be transversal to the standard contact distribution on the sphere, and if the domain is a polydisc, then the curve must be monotonic increasing with respect to all coordinates in the standard coordinatization of the torus. We use assertions of this kind to obtain a simple description of discrete inclusions in spectra (of minimal invariant subspaces) for several problems of $\operatorname{SL}_2(\mathbb R)$-harmonic analysis.
@article{IM2_1998_62_3_a2,
     author = {Yu. A. Neretin},
     title = {The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra},
     journal = {Izvestiya. Mathematics },
     pages = {493--513},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a2/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 493
EP  - 513
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a2/
LA  - en
ID  - IM2_1998_62_3_a2
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra
%J Izvestiya. Mathematics 
%D 1998
%P 493-513
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a2/
%G en
%F IM2_1998_62_3_a2
Yu. A. Neretin. The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 493-513. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a2/

[1] Adams J. D., “Discrete spectrum of reductive dual pair $(O(p,q),\operatorname {Sp}(2m))$”, Inv. Math., 74 (1983), 449–475 | DOI | MR | Zbl

[2] Aleksandrov A. B., “Teoriya funktsii v share”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 8, VINITI, M., 1985, 115–190

[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[4] Beurling A., “Ensembles exeptionnels”, Acta Math., 72 (1940), 1–13 | DOI | MR | Zbl

[5] Fefferman C., “Inequalities for strongly singular convolution operators”, Acta Math., 124:1–2 (1970), 9–36 | DOI | MR | Zbl

[6] Flensted-Jensen M., Analysis on non-Riemannian symmetric spaces, Conference Board, 61, Amer. Math. Soc., 1986 | MR

[7] Gagliardo E., “Caratterizzazioni delle trace sulla frontiera relative ad alcune classi di funzioni in $n$ variabli”, Rend. Sem. Univ. Padova, 27 (1957), 284–305 | MR | Zbl

[8] Gelfand I. M., Gindikin S. G., “Kompleksnye mnogoobraziya, ostovy kotorykh – poluprostye veschestvennye gruppy Li, i analiticheskie diskretnye serii predstavlenii”, Funktsion. analiz i ego prilozh., 11:4 (1977), 19–27 | MR

[9] Gindikin S. G., “Conformal analysis on hyperboloids”, J. Geom. Phys., 10 (1993), 175–184 | DOI | MR | Zbl

[10] Egorov Yu. V., Shubin M. I., “Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Osnovy klassicheskoi teorii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 30, VINITI, M., 1987

[11] Jackobsen H. P., Vergne M., “Restrictions and expansions of holomorphic representations”, J. Funct. Anal., 34 (1979), 29–53 | DOI | MR

[12] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki, 4, VINITI, M., 1975, 13–142

[13] Kobayashi T., Singular unitary representations and discrete series for indefinite Stiefel manifolds $U(p,q;\mathbb F)/U(p-m,q;\mathbb F)$, Mem. AMS, 464, 1992 | MR

[14] Kobayashi T., “Discrete decomposability of the restrictions of $A_{\frak q}(\lambda )$ with respect to reductive subgroups and its applications”, Inv. Math., 117 (1994), 181–205 | DOI | MR | Zbl

[15] Li J. S., “Singular unitary representations of classical groups”, Inv. Math., 97 (1989), 237–255 | DOI | MR | Zbl

[16] Molchanov V. F., “Tenzornye proizvedeniya unitarnykh predstavlenii trekhmernoi gruppy Lorentsa”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 860–861 | MR

[17] Molchanov V. F., “Kvantovanie na mnimoi ploskosti Lobachevskogo”, Funktsion. analiz i ego prilozh., 14:2 (1980), 73–74 | MR | Zbl

[18] Molchanov V. F., “On quantization on para-hermitian symmetric spaces”, Contemporary Mathematical Physics, F. A. Berezin memorial volume, Amer. Math. Soc. Translations, 175, 81–95 | MR | Zbl

[19] Molchanov V. F., Projections on the discrete spectrum for hyperboloids, Preprint of Mittag–Leffler Institute. Report No 27, 1995/96

[20] Nagel A., Rudin W., “Local boundary behavior of bounded holomorphic functions”, Can. J. Math., 30 (1978), 583–592 | MR | Zbl

[21] Neretin Yu. A., “O diskretnykh vkhozhdeniyakh predstavlenii dopolnitelnoi serii v tenzornye proizvedeniya unitarnykh predstavlenii”, Funktsion. analiz i ego prilozh., 20:1 (1986), 79–80 | MR | Zbl

[22] Neretin Yu. A., Olshanskii G. I., “Granichnye znacheniya golomorfnykh funktsii, osobye unitarnye predstavleniya grupp $O(p,q)$ i ikh predely pri $q\to \infty $”, Zapiski nauch. sem. LOMI, 223, Nauka, L., 1995, 9–91 | MR | Zbl

[23] Olshanskii G. I., “Neprivodimye unitarnye predstavleniya grupp $U(p,q)$, vyderzhivayuschie predelnyi perekhod pri $q\to \infty $”, Zapiski nauch. sem. LOMI, 172, Nauka, L., 1989, 114–120

[24] Ørsted B., Zhang G., Tensor products of analytic continuations of holomorphic discrete series, Preprint No 18, Institut for Matematik og Datalogi, Odense University, 1994 | MR

[25] Pukanszky L., “On the Kronecker products of irreducible representations of $2\times 2$ real unimodular group, I”, Trans. Amer. Math. Soc., 100:1 (1961), 116–152 | DOI | MR | Zbl

[26] “Plancherel formula for universal covering group of the group $\operatorname {SL}_2(\mathbb R)$”, Math. Ann., 156 (1964), 96–143 | DOI | MR | Zbl

[27] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[28] Repka J., “Tensor products of unitary representations of $\operatorname {SL}_2(\mathbb R)$”, Amer. J. Math., 100 (1978), 747–774 | DOI | MR | Zbl

[29] Rudin U., Teoriya funktsii v polikruge, Mir, M., 1974 | MR | Zbl

[30] Rudin U., Teoriya funktsii v edinichnom share v $\mathbb C^n$, Mir, M., 1978

[31] Salem R., Zygmund A., “Capacities of sets and Fourier series”, Trans. Amer. Math. Soc., 59 (1946), 23–41 | DOI | MR | Zbl

[32] Schlichtkrull H., “A series of unitary irreducible representations induced from a symmetric subgroup”, Inv. Math., 68 (1982), 497–516 | DOI | MR | Zbl

[33] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[34] Vladimirov V. S., Sergeev A. G., “Kompleksnyi analiz v trube buduschego”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 8, VINITI, M., 1985, 191–266 | MR