The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 493-513

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the operator of restriction of functions holomorphic in a ball or a polydisc to curves lying on the Shilov boundary. It turns out that any function with polynomial growth near the boundary has such a restriction if the position of the curve satisfies a certain condition: if the domain is a ball, then the curve must be transversal to the standard contact distribution on the sphere, and if the domain is a polydisc, then the curve must be monotonic increasing with respect to all coordinates in the standard coordinatization of the torus. We use assertions of this kind to obtain a simple description of discrete inclusions in spectra (of minimal invariant subspaces) for several problems of $\operatorname{SL}_2(\mathbb R)$-harmonic analysis.
@article{IM2_1998_62_3_a2,
     author = {Yu. A. Neretin},
     title = {The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra},
     journal = {Izvestiya. Mathematics },
     pages = {493--513},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a2/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 493
EP  - 513
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a2/
LA  - en
ID  - IM2_1998_62_3_a2
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra
%J Izvestiya. Mathematics 
%D 1998
%P 493-513
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a2/
%G en
%F IM2_1998_62_3_a2
Yu. A. Neretin. The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 493-513. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a2/