Typical integrable Hamiltonian systems on a~four-dimensional symplectic manifold
Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 261-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the topology of integrable Hamiltonian systems with two degrees of freedom in the neighbourhood of a degenerate circle. Among all degenerate circles, the class of so-called generic degenerate circles is singled out. These circles cannot be removed from the symplectic manifold by a small perturbation of the Poisson action, and the system remains topologically equivalent to the unperturbed system in their neighbourhood. Moreover, if the unperturbed system has only Bott circles and generic degenerate circles, then, under the condition of simplicity, the perturbed system is globally topologically equivalent to it. It is proved that if an additional condition holds, then there is a small perturbation for which all degenerate circles are generic.
@article{IM2_1998_62_2_a2,
     author = {V. V. Kalashnikov},
     title = {Typical integrable {Hamiltonian} systems on a~four-dimensional symplectic manifold},
     journal = {Izvestiya. Mathematics },
     pages = {261--285},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a2/}
}
TY  - JOUR
AU  - V. V. Kalashnikov
TI  - Typical integrable Hamiltonian systems on a~four-dimensional symplectic manifold
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 261
EP  - 285
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a2/
LA  - en
ID  - IM2_1998_62_2_a2
ER  - 
%0 Journal Article
%A V. V. Kalashnikov
%T Typical integrable Hamiltonian systems on a~four-dimensional symplectic manifold
%J Izvestiya. Mathematics 
%D 1998
%P 261-285
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a2/
%G en
%F IM2_1998_62_2_a2
V. V. Kalashnikov. Typical integrable Hamiltonian systems on a~four-dimensional symplectic manifold. Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 261-285. http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a2/

[1] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[2] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, DAN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[3] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[4] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[5] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 3-e izd., Nauka, M., 1989 | MR

[6] Kalashnikov V. V., “O tipichnosti bottovskikh integriruemykh gamiltonovykh sistem”, Matem. sb., 185:1 (1994), 107–120 | MR | Zbl

[7] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh okrestnostyakh prostykh osobykh tochek”, Matem. sb., 183:12 (1992), 141–176 ; Матем. сб., 184:4 (1993), 105–138 | MR | Zbl | MR | Zbl

[8] Bolsinov A. V., “Methods of Calculation of the Fomenko–Zieshang Invariant”, Adv. in Sov. Math., 6 (1991), 147–183 | MR | Zbl

[9] Golubitsky M., Schaeffer D., Singularities and group in bifurcation theory, V. 1, Appl. Math. Sci., 51, Springer, New York e.a., 1985 | MR | Zbl

[10] Nguen T. Z., “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4 (1990), 161–162 | MR

[11] Ito H., “Acation-angle coordinates at singularities for analytic integrable systems”, Math. Z., 206 (1991), 363–407 | DOI | MR | Zbl

[12] Oshemkov A. A., “Fomenko Invariants for the Main Integrable Cases of the Rigid Body Motion Equations”, Adv. in Sov. Math., 6 (1991), 67–146 | MR | Zbl

[13] Orel O. E., “Topologicheskii analiz okrestnosti vyrozhdennoi odnomernoi orbity puassonovskogo deistviya $\mathbb R^2$ na simplekticheskom mnogoobrazii $M^4$”, UMN, 48:6 (1993), 165–166 | MR | Zbl

[14] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Sovr. problemy matematiki. Fund. napravleniya, 55, VINITI, M., 1989, 137–309 | MR

[15] Bridges T., Cushman R., “Unipotent normal forms for symplectic maps”, Physica, 65 (1993), 211–241 | MR | Zbl

[16] Kalashnikov V., A class of Generic Integrable Hamiltonian Systems with Two Degrees of Freedom, Preprint No 907, University of Utrecht, 1995