Fourier coefficients of piecewise-monotone functions of several variables
Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 247-259

Voir la notice de l'article provenant de la source Math-Net.Ru

As the main result of this paper we obtain the best possible estimates for the Hardy–Littlewood sums of the Fourier coefficients of piecewise-monotone functions in the spaces $L_p([-\pi,\pi)^m)$, where $2$ .
@article{IM2_1998_62_2_a1,
     author = {M. I. Dyachenko},
     title = {Fourier coefficients of piecewise-monotone functions of several variables},
     journal = {Izvestiya. Mathematics },
     pages = {247--259},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a1/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Fourier coefficients of piecewise-monotone functions of several variables
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 247
EP  - 259
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a1/
LA  - en
ID  - IM2_1998_62_2_a1
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Fourier coefficients of piecewise-monotone functions of several variables
%J Izvestiya. Mathematics 
%D 1998
%P 247-259
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a1/
%G en
%F IM2_1998_62_2_a1
M. I. Dyachenko. Fourier coefficients of piecewise-monotone functions of several variables. Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 247-259. http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a1/