A~proof of the extended future tube conjecture
Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 201-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the paper is to give a proof of the extended future tube conjecture.
@article{IM2_1998_62_1_a6,
     author = {X.-Yu. Zhou},
     title = {A~proof of the extended future tube conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {201--213},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a6/}
}
TY  - JOUR
AU  - X.-Yu. Zhou
TI  - A~proof of the extended future tube conjecture
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 201
EP  - 213
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a6/
LA  - en
ID  - IM2_1998_62_1_a6
ER  - 
%0 Journal Article
%A X.-Yu. Zhou
%T A~proof of the extended future tube conjecture
%J Izvestiya. Mathematics 
%D 1998
%P 201-213
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a6/
%G en
%F IM2_1998_62_1_a6
X.-Yu. Zhou. A~proof of the extended future tube conjecture. Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 201-213. http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a6/

[1] Grauert H., Remmert R., “Plurisubharmonische Funktionen in komplexen Räumen”, Math. Z., 65 (1956), 175–194 | DOI | MR | Zbl

[2] Gunning R. C., Introduction to holomorphic functions of several variables, V. 1–3, Brooks/Cole Publishing Company, Pacific Grove, CA, 1990 | Zbl

[3] Heinzner P., “Geometric invariant theory on Stein spaces”, Math. Ann., 289:4 (1991), 631–662 | DOI | MR | Zbl

[4] Khua Lo-Ken, Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959

[5] Iost R., Obschaya teoriya kvantovannykh polei, Mir, M., 1967 | MR

[6] Kiselman C. O., “The partial Legendre transformation for plurisubharmonic functions”, Invent. Math., 49 (1978), 137–148 | DOI | MR | Zbl

[7] Lelong P., Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, Paris–London–New York, 1968 | MR | Zbl

[8] Loeb J. J., “Action d'une forme réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques”, Ann. Inst. Fourier, 35 (1985), 59–97 | MR | Zbl

[9] Lyu Tszyken, Klassicheskie mnogoobraziya i klassicheskie oblasti, Nauchno-tekhnicheskoe izd-vo, Shankhai, 1963, na kitaiskom yazyke

[10] Luna D., “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl

[11] Schwarz G. W., “Invariant differential operators”, Proc. ICM–94, Birkhäuser, Basel, 1995, 333–341 | MR | Zbl

[12] Schwarz G. W., “Lifting differential operators from orbit spaces”, Ann. Sci. École Norm. Sup., 28 (1995), 253–306 | MR

[13] Sergeev A. G., Khaintsner P., “Rasshirennyi matrichnyi disk yavlyaetsya oblastyu golomorfnosti”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 647–657 | MR

[14] Vladimirov V. S., Sergeev A. G., “Kompleksnyi analiz v trube buduschego”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 8, VINITI, M., 1985, 191–266 | MR

[15] Snow D. M., “Reductive group actions on Stein spaces”, Math. Ann., 259 (1982), 79–97 | DOI | MR | Zbl

[16] Striter R. F., Vaitman A. S., RST, spin i statistika i vse takoe, Nauka, M., 1966

[17] Vladimirov V. S., “Analiticheskie funktsii neskolkikh kompleksnykh peremennykh i kvantovaya teoriya polya”, Tr. MIAN, 135, Nauka, M., 1975, 68–80 | MR | Zbl

[18] Vladimirov V. S., “Several complex variables in mathematical physics”, Sém. Lelong–Skoda, Lecture Notes in Math., 919, 1982, 358–386 | Zbl

[19] Vladimirov V. S., Zharinov V. V., “Analiticheskie metody v matematicheskoi fizike”, Tr. MIAN, 175, Nauka, M., 1986, 113–133 | MR | Zbl

[20] Wightman A. S., “Quantum field theory and analytic functions of several complex variables”, J. Indian Math. Soc., 24 (1960/1961), 625–677 | MR

[21] Trushin V. B., Zavyalov B. I., “O rasshirennoi $n$-tochechnoi trube”, TMF, 27 (1976), 3–15

[22] Zhou X. Y., “On orbit connectedness, orbit convexity, and envelopes of holomorphy”, Izv. RAN. Ser. matem., 58:2 (1994), 196–205 | MR