Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1997_61_6_a4, author = {A. O. Ivanov and A. A. Tuzhilin}, title = {The geometry of minimal networks with a~given topology and a~fixed boundary}, journal = {Izvestiya. Mathematics }, pages = {1231--1263}, publisher = {mathdoc}, volume = {61}, number = {6}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a4/} }
TY - JOUR AU - A. O. Ivanov AU - A. A. Tuzhilin TI - The geometry of minimal networks with a~given topology and a~fixed boundary JO - Izvestiya. Mathematics PY - 1997 SP - 1231 EP - 1263 VL - 61 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a4/ LA - en ID - IM2_1997_61_6_a4 ER -
A. O. Ivanov; A. A. Tuzhilin. The geometry of minimal networks with a~given topology and a~fixed boundary. Izvestiya. Mathematics , Tome 61 (1997) no. 6, pp. 1231-1263. http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a4/
[1] Clark R. C., “Communication networks, soap films and vectors”, Phys. Ed., 16 (1981), 32–37 | DOI
[2] Dijkstra E. W., “A note on two problems with connection with graphs”, Numer. Math., 1:5 (1959), 269–271 | DOI | MR | Zbl
[3] Du D. Z., Hwang F. K., “A New Bound for the Steiner Ratio”, Trans. Amer. Math. Soc., 278:1 (1983), 137–148 | DOI | MR | Zbl
[4] Du D. Z., Hwang F. K., A Proof of Gilbert–Pollak's Conjecture on the Steiner Ratio, DIMACS Technical Report No 90–72, 1990
[5] Du D. Z., Hwang F. K., “An approach for proving lower bounds: solution of Gilbert–Pollak's Conjecture on the Steiner Ratio”, Proc. of the 31st annual symp. on found. of comp. science, 1990
[6] Du D. Z., Hwang F. K., Chao S. C., “Steiner minimal trees for points on a circle”, Proc. Amer. Math. Soc., 95:4 (1985), 613–618 | DOI | MR | Zbl
[7] Du D. Z., Hwang F. K., Weng J. F., “Steiner minimal trees for points on a zig-zag lines”, Trans. Amer. Math. Soc., 278:1 (1983), 149–156 | DOI | MR | Zbl
[8] Du D. Z., Hwang F. K., Weng J. F., “Steiner minimal trees for Regular Polygons”, Disc. and Comp. Geometry, 2 (1987), 65–84 | DOI | MR | Zbl
[9] Du D. Z., Hwang F. K., Yao E. N., “The Steiner ratio conjecture is true for five points”, J. Combin Th. Ser. A, 38 (1985), 230–240 | DOI | MR | Zbl
[10] Du D. Z., Hwang F. K., Song G. D., Ting G. T., “Steiner minimal trees on sets of four points”, Discr. and Comp. Geometry, 2 (1987), 401–414 | DOI | MR | Zbl
[11] Garey M. R., Graham R. L., Johnson D. S., “Some $NP$-complete geometric problems”, Eighth Annual Symp. on Theory of Comput., 1976, 10–22 | DOI | MR | Zbl
[12] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl
[13] Hildebrandt S., Tromba A., Mathematics and optimal form, Scientific American Books, Inc., New York, 1984 | MR
[14] Hwang F. K., “A linear time algorithm for full Steiner trees”, Oper. Res. Letter, 5 (1986), 235–237 | DOI | MR
[15] Hwang F. K., Weng J. F., “Hexagonal coordinate Systems and Steiner minimal trees”, Disc. Math., 62 (1986), 49–57 | DOI | MR | Zbl
[16] Hwang F. K., Richards D., Winter P., The Steiners Tree Problem, Elsevier Science Publishers, 1992 | MR
[17] Jarnik V., Kössler M., “O minimalnich grafeth obeahujicich n danijch bodu”, Cas. Pest. Mat. a Fys., 63 (1934), 223–235 | Zbl
[18] Kruskal J. B., “On the shortest spanning subtree of a graph and traveling salesman problem”, Proc. Amer. Math. Soc., 7 (1956), 48–50 | DOI | MR | Zbl
[19] Melzak Z. A., “On the problem of Steiner”, Canad. Math. Bull., 4 (1960), 143–148 | MR
[20] Melzak Z. A., Companion to concrete mathematics, Wiley–Interscience, New York, 1973 | MR | Zbl
[21] Pollak H. O., “Some remarks on the Steiner problem”, J. Combin. Thy. Ser. A24, 1978, 278–295 | DOI | MR | Zbl
[22] Preparata F., Shamos M., Computational Geometry. An introduction, Springer-Verlag, New York, 1985 | MR
[23] Prim R. C., “Shortest connecting networks and some generalizations”, BSTJ, 36 (1957), 1389–1401
[24] Rubinstein J. H., Thomas D. A., “The Steiner ratio conjecture for six points”, J. Combin. Thy. Ser. A58, 1989, 54–77 | MR
[25] Rubinstein J. H., Thomas D. A., Cole T., Steiner Minimal Networks for Convex Configurations, Preprint series No 15, The university of Melbourne dept. of Math., 1991 | MR
[26] Rubinstein J. H., Thomas D. A., “Graham's Problem On Shortest Networks for Points on a Circle”, Algorithmica, 7 (1992), 193–218 | DOI | MR | Zbl
[27] Shamos M. I., Computational Geometry, Ph. D. Thesis, Dept. of Comput. Sci., Yale Univ., 1978 | Zbl
[28] Smith W. D., “How to find Steiner minimal trees in Euclidean $d$-space”, Algorithmica, 1992, no. 7, 137–177 | DOI | MR
[29] Emelichev V. A. i dr., Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl
[30] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl
[31] Fomenko A. T., Topologicheskie variatsionnye zadachi, Izd-vo MGU, M., 1984 | MR | Zbl
[32] Fomenko A. T., Variatsionnye metody v topologii, Nauka, M., 1982 | MR
[33] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR
[34] Ivanov A. O., “Geometriya ploskikh lokalno minimalnykh binarnykh derevev”, Matem. sb., 186:9 (1995), 45–76 | MR | Zbl
[35] Ivanov A. O., “Ploskie vzveshennye minimalnye binarnye derevya”, Fundamentalnaya i prikladnaya matem., 2:2 (1996), 511–562 | MR
[36] Ivanov A. O., Tuzhilin A. A., “Reshenie zadachi Shteinera dlya vypuklykh granits”, UMN, 45:2 (1990), 207–208 | MR | Zbl
[37] Ivanov A. O., Tuzhilin A. A., “Zadacha Shteinera dlya vypuklykh granits ili ploskie minimalnye seti”, Matem. sb., 182:12 (1991), 1813–1844 | MR
[38] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, UMN, 47:2 (1992), 53–115 | MR | Zbl
[39] Ivanov A. O., Tuzhilin A. A., “The Steiner problem for convex boundaries. I: General case”, Advances in Soviet Mathematics, 15 (1993), 15–92 | MR | Zbl
[40] Ivanov A. O., Tuzhilin A. A., “The Steiner problem for convex boundaries. II: The regular case”, Advances in Soviet Mathematics, 15 (1993), 93–131 | MR | Zbl
[41] Ivanov A. O., Tuzhilin A. A., Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, N.W., Boca Raton, Florida, 1994 | MR | Zbl
[42] Ivanov A. O., Tuzhilin A. A., “Topologii lokalno minimalnykh ploskikh binarnykh derevev”, UMN, 49:6 (1994), 191–192 | MR | Zbl
[43] Ivanov A. O., Tuzhilin A. A., “Vzveshennye minimalnye $2$-derevya”, UMN, 50:3 (1995), 155–156 | MR | Zbl
[44] Ivanov A. O., Tuzhilin A. A., “Geometriya ploskikh lineinykh derevev”, UMN, 51:2 (1996), 161–162 | MR | Zbl
[45] Ivanov A. O., Tuzhilin A. A., “Chislo vrascheniya ploskikh lineinykh derevev”, Matem. sb., 187:8 (1996), 41–92 | MR | Zbl
[46] Ivanov A. O., Iskhakov I. V., Tuzhilin A. A., “Minimalnye seti na pravilnykh mnogougolnikakh: realizatsiya lineinykh parketov”, Vestn. MGU. Ser. matem., 1993, no. 6, 77–81 | MR
[47] Ivanov A. O., Ptitsyna I. V., Tuzhilin A. A., “Klassifikatsiya zamknutykh minimalnykh setei na ploskikh dvumernykh torakh”, Matem. sb., 183:12 (1992), 3–44 | MR | Zbl
[48] Tuzhilin A. A., “Minimalnye binarnye derevya s pravilnoi granitsei: sluchai skeletov s chetyrmya kontsami”, Matem. sb., 187:4 (1996), 117–159 | MR | Zbl
[49] Tuzhilin A. A., “Minimalnye binarnye derevya s pravilnoi granitsei: sluchai skeletov s pyatyu kontsami”, Matem. zametki, 61:6 (1997), 907–921 | MR | Zbl
[50] Kuhn H. W., “Steiner's problem revisted”, Studies in Optimization, Studies in Math., 10, eds. G. B. Dantzig, B. C. Eaves, Math. Assoc. Amer., 1975, 53–70
[51] Zacharias M., Encyklopädie der Mathematischen Wissenschaften, V. III, AB9