The geometry of minimal networks with a~given topology and a~fixed boundary
Izvestiya. Mathematics , Tome 61 (1997) no. 6, pp. 1231-1263

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the structure of the set $\mathcal M_G(\varphi)$ of all locally minimal plane networks with a fixed topology $G$ and a fixed boundary $\varphi$. It is shown that if this set is non-empty, then it is a $k$-dimensional convex body in the configuration space $\mathbb R^N$ of the movable vertices of the network, where $k$ is the cyclomatic number for the movable subgraph in $G$. In particular, all the networks in $\mathcal M_G(\varphi)$ are parallel, have the same length, and can be deformed into one another in the class of locally minimal networks of the same type and with the same boundary. Moreover, we describe how two networks belonging to $\mathcal M_G(\varphi)$ can be distinguished.
@article{IM2_1997_61_6_a4,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {The geometry of minimal networks with a~given topology and a~fixed boundary},
     journal = {Izvestiya. Mathematics },
     pages = {1231--1263},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a4/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - The geometry of minimal networks with a~given topology and a~fixed boundary
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 1231
EP  - 1263
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a4/
LA  - en
ID  - IM2_1997_61_6_a4
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T The geometry of minimal networks with a~given topology and a~fixed boundary
%J Izvestiya. Mathematics 
%D 1997
%P 1231-1263
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a4/
%G en
%F IM2_1997_61_6_a4
A. O. Ivanov; A. A. Tuzhilin. The geometry of minimal networks with a~given topology and a~fixed boundary. Izvestiya. Mathematics , Tome 61 (1997) no. 6, pp. 1231-1263. http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a4/