The generalized joint spectral radius. A~geometric approach
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 995-1030.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the joint spectral radius with an arbitrary exponent $p\in[1,+\infty]$ are investigated for a set of finite-dimensional linear operators $A_1,\dots,A_k$ \begin{align*} \widehat\rho_p=\lim_{n\to\infty}\biggl(\dfrac{1}{k^n}\,\sum_\sigma\|A_{\sigma (1)}\cdots A_{\sigma(n)}\|^p\biggr)^{\frac{1}{pn}},\quad p\infty, \\ \widehat\rho_{\infty}=\lim_{n\to\infty}\max_{\sigma}\|A_{\sigma(1)}\cdots A_{\sigma(n)}\|^{\frac{1}{n}}, \end{align*} where the summation and maximum extend over all maps $$ \sigma \colon\{1,\dots,n\}\to\{1,\dots,k\}. $$ Using the operation of generalized addition of convex sets, we extend the Dranishnikov–Konyagin theorem on invariant convex bodies, which has hitherto been established only for the case $p=\infty$. The paper concludes with some assertions on the properties of invariant bodies and their relationship to the spectral radius $\widehat \rho_p$. The problem of calculating $\widehat \rho_p$ for even integers $p$ is reduced to determining the usual spectral radius for an appropriate finite-dimensional operator. For other values of $p$, a geometric analogue of the method with a pre-assigned accuracy is constructed and its complexity is estimated.
@article{IM2_1997_61_5_a4,
     author = {V. Yu. Protasov},
     title = {The generalized joint spectral radius. {A~geometric} approach},
     journal = {Izvestiya. Mathematics },
     pages = {995--1030},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a4/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - The generalized joint spectral radius. A~geometric approach
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 995
EP  - 1030
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a4/
LA  - en
ID  - IM2_1997_61_5_a4
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T The generalized joint spectral radius. A~geometric approach
%J Izvestiya. Mathematics 
%D 1997
%P 995-1030
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a4/
%G en
%F IM2_1997_61_5_a4
V. Yu. Protasov. The generalized joint spectral radius. A~geometric approach. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 995-1030. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a4/

[1] Rota G. C., Strang G., “A note on the joint spectral radius”, Kon. Nederi. Acad. Wet. Prok., 63 (1960), 379–381 | MR | Zbl

[2] Berger M. A., Wang Y., “Bounded semi-groups of matrices”, Lin. Alg. Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[3] Collela D., Heil G., “Characterizations of scaling functions. I: Continuous solutions”, SIAM J. Matrix Anal. Appl., 15 (1994), 496–518 | DOI | MR

[4] Protasov V. Yu., “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundamentalnaya i prikladnaya matematika, 2:1 (1996), 205–231 | MR | Zbl

[5] Lau K. S., Wang J., “Characterization of $L_p$-solutions for two-scale dilations equations”, SIAM J. Math. Anal., 26 (1995), 1018–1046 | DOI | MR | Zbl

[6] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986 | MR

[7] Berzhe M., Geometriya, T. 1, Mir, M., 1984

[8] Ikramov Kh. D., Nesimmetrichnaya problema sobstvennykh znachenii, Nauka, M., 1991 | MR

[9] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR | Zbl

[10] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[11] Frobenius G., “Über Matrizen aus positiven elementen”, S.-B. Press Akad. Wiss. Berlin, 1909, 514–518 | Zbl

[12] Firey W. J., “Some means of convex bodies”, Trans. Amer. Math. Soc., 129 (1967), 181–217 | DOI | MR | Zbl