Finite presentability of the commutator subgroup of the fundamental group of the complement of a plane curve
Izvestiya. Mathematics, Tome 61 (1997) no. 5, pp. 961-967
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to the proof of the following theorem. The commutant of the fundamental group of the complement of a plane irreducible projective curve is a finitely presented group.
@article{IM2_1997_61_5_a2,
author = {Vik. S. Kulikov},
title = {Finite presentability of the commutator subgroup of the fundamental group of the complement of a~plane curve},
journal = {Izvestiya. Mathematics},
pages = {961--967},
year = {1997},
volume = {61},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a2/}
}
TY - JOUR AU - Vik. S. Kulikov TI - Finite presentability of the commutator subgroup of the fundamental group of the complement of a plane curve JO - Izvestiya. Mathematics PY - 1997 SP - 961 EP - 967 VL - 61 IS - 5 UR - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a2/ LA - en ID - IM2_1997_61_5_a2 ER -
Vik. S. Kulikov. Finite presentability of the commutator subgroup of the fundamental group of the complement of a plane curve. Izvestiya. Mathematics, Tome 61 (1997) no. 5, pp. 961-967. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a2/
[1] Kulikov Vik. S., “Mnogochleny Aleksandera ploskikh algebraicheskikh krivykh”, Izv. RAN. Ser. matem., 57:1 (1993), 76–101 | MR | Zbl
[2] Nori M., “Zariski's conjecture and related problems”, Ann. Sci. Ec. Norm. Sup. Ser. 4, 16 (1983), 305–344 | MR | Zbl
[3] Stallings J. R., “On fibering certain 3-manifolds”, Topology of 3-manifolds, Proc. Top. Inst. Univ. Georgia (1961), ed. M. K. Fort, Prentice Hall, Englewood Cliffs, N. J., 1962, 95–100 | MR