Finite presentability of the commutator subgroup of the fundamental group of the complement of a~plane curve
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 961-967.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the proof of the following theorem. The commutant of the fundamental group of the complement of a plane irreducible projective curve is a finitely presented group.
@article{IM2_1997_61_5_a2,
     author = {Vik. S. Kulikov},
     title = {Finite presentability of the commutator subgroup of the fundamental group of the complement of a~plane curve},
     journal = {Izvestiya. Mathematics },
     pages = {961--967},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a2/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Finite presentability of the commutator subgroup of the fundamental group of the complement of a~plane curve
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 961
EP  - 967
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a2/
LA  - en
ID  - IM2_1997_61_5_a2
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Finite presentability of the commutator subgroup of the fundamental group of the complement of a~plane curve
%J Izvestiya. Mathematics 
%D 1997
%P 961-967
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a2/
%G en
%F IM2_1997_61_5_a2
Vik. S. Kulikov. Finite presentability of the commutator subgroup of the fundamental group of the complement of a~plane curve. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 961-967. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a2/

[1] Kulikov Vik. S., “Mnogochleny Aleksandera ploskikh algebraicheskikh krivykh”, Izv. RAN. Ser. matem., 57:1 (1993), 76–101 | MR | Zbl

[2] Nori M., “Zariski's conjecture and related problems”, Ann. Sci. Ec. Norm. Sup. Ser. 4, 16 (1983), 305–344 | MR | Zbl

[3] Stallings J. R., “On fibering certain 3-manifolds”, Topology of 3-manifolds, Proc. Top. Inst. Univ. Georgia (1961), ed. M. K. Fort, Prentice Hall, Englewood Cliffs, N. J., 1962, 95–100 | MR