On a~weak (algebraic) extremum principle for a~second-order parabolic system
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 933-959
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of a weak “algebraic” extremum principle (WAEP) is introduced for second-order parabolic systems. It is based on the representation of the (coefficient) matrix of the system as a sum of matrices that are similar to diagonal matrices and nilpotent matrices, and on the reduction of the system to a single equation. The validity of the WAEP is proved for a rather broad class of second-order parabolic systems with “full mixing”. The WAEP is applied to prove the uniqueness of the solution of the first boundary-value problem for the parabolic systems in question.
@article{IM2_1997_61_5_a1,
author = {L. A. Kamynin and B. N. Khimchenko},
title = {On a~weak (algebraic) extremum principle for a~second-order parabolic system},
journal = {Izvestiya. Mathematics },
pages = {933--959},
publisher = {mathdoc},
volume = {61},
number = {5},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a1/}
}
TY - JOUR AU - L. A. Kamynin AU - B. N. Khimchenko TI - On a~weak (algebraic) extremum principle for a~second-order parabolic system JO - Izvestiya. Mathematics PY - 1997 SP - 933 EP - 959 VL - 61 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a1/ LA - en ID - IM2_1997_61_5_a1 ER -
L. A. Kamynin; B. N. Khimchenko. On a~weak (algebraic) extremum principle for a~second-order parabolic system. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 933-959. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a1/