On a~weak (algebraic) extremum principle for a~second-order parabolic system
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 933-959

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a weak “algebraic” extremum principle (WAEP) is introduced for second-order parabolic systems. It is based on the representation of the (coefficient) matrix of the system as a sum of matrices that are similar to diagonal matrices and nilpotent matrices, and on the reduction of the system to a single equation. The validity of the WAEP is proved for a rather broad class of second-order parabolic systems with “full mixing”. The WAEP is applied to prove the uniqueness of the solution of the first boundary-value problem for the parabolic systems in question.
@article{IM2_1997_61_5_a1,
     author = {L. A. Kamynin and B. N. Khimchenko},
     title = {On a~weak (algebraic) extremum principle for a~second-order parabolic system},
     journal = {Izvestiya. Mathematics },
     pages = {933--959},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a1/}
}
TY  - JOUR
AU  - L. A. Kamynin
AU  - B. N. Khimchenko
TI  - On a~weak (algebraic) extremum principle for a~second-order parabolic system
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 933
EP  - 959
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a1/
LA  - en
ID  - IM2_1997_61_5_a1
ER  - 
%0 Journal Article
%A L. A. Kamynin
%A B. N. Khimchenko
%T On a~weak (algebraic) extremum principle for a~second-order parabolic system
%J Izvestiya. Mathematics 
%D 1997
%P 933-959
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a1/
%G en
%F IM2_1997_61_5_a1
L. A. Kamynin; B. N. Khimchenko. On a~weak (algebraic) extremum principle for a~second-order parabolic system. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 933-959. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a1/