On semi-unimodal maps of the plane and the structure of their sets of non-wandering points
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 899-931.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of semi-unimodal endomorphisms of the plane and study their sets of non-wandering points. It is proved that there are parameter values such that these sets consist of several components, one of which is non-trivially non-compact (that is, has a trajectory receding to infinity), whereas the other components are compact and include a set that is an equivariant image of the Cantor set and part of its boundary is composed of self-similar elements (that is, has a fractal type structure). Furthermore, it turns out that there are parameter values such that the compact and non-compact components intertwine on the coordinate axes.
@article{IM2_1997_61_5_a0,
     author = {V. A. Dobrynskii},
     title = {On semi-unimodal maps of the plane and the structure of their sets of non-wandering points},
     journal = {Izvestiya. Mathematics },
     pages = {899--931},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a0/}
}
TY  - JOUR
AU  - V. A. Dobrynskii
TI  - On semi-unimodal maps of the plane and the structure of their sets of non-wandering points
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 899
EP  - 931
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a0/
LA  - en
ID  - IM2_1997_61_5_a0
ER  - 
%0 Journal Article
%A V. A. Dobrynskii
%T On semi-unimodal maps of the plane and the structure of their sets of non-wandering points
%J Izvestiya. Mathematics 
%D 1997
%P 899-931
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a0/
%G en
%F IM2_1997_61_5_a0
V. A. Dobrynskii. On semi-unimodal maps of the plane and the structure of their sets of non-wandering points. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 899-931. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a0/

[1] Hènon M., “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50 (1976), 69–77 | DOI | MR

[2] Lozi R., “Un attracteur etrange du type attracteur de Hènon”, J. Phys. Paris, 39 (Coll. C5) (1978), 9–10

[3] Pounder J. R., Rogers T. D., “The geometry of chaos: Dynamics of a nonlinear second-order difference equation”, Bull. Math. Biol., 42 (1980), 551–597 | MR | Zbl

[4] Aronson D. G., Chory M. A., Hall G. R., McGehee R. P., “Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study”, Commun. Math. Phys., 83 (1982), 303–354 | DOI | MR | Zbl

[5] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Dokl. RAN, 341:4 (1995), 442–445 | MR | Zbl

[6] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Matem. zametki, 1995, no. 5, 669–680 | MR | Zbl

[7] Gumowski I., Mira C., Dynamique chaotique. Transformations ponctuelles. Trasition order-desorder, Editions Cepadues, Toulouse, 1980 | MR

[8] Gumowski I., Mira C., Recurrences and discrete dynamic systems, Lecture Notes in Mathematics, Springer, 1980 | MR

[9] Cathala J. C., Kawakami H., Mira C., “Singular points with $2$ multipliers $s_1=-s_2=1$ in the bifurcation curves of maps”, Int. J. of Bifurcation and Chaos, 2:4 (1992), 1001–1004 | DOI | MR | Zbl

[10] Gardini L., Absorbing areas and their bifurcations. Quaderno No 7, Preprint. March, 1992, Instituto di Scienze Economiche. Facolta' di Economia e Commercio; Universita' di Urbino, 94 pp. | MR

[11] Mira C., Fournier-Prunaret D., Gardini L., Kawakami H., Cathala J. C., “Basin bifurcations of two-dimensional non-invertible maps. Fractalization of basins”, Int. J. of Bifurcation and Chaos, 4:2 (1994), 343–381 | DOI | MR | Zbl

[12] Mira C., “Complex dynamics in two-dimensional endomorphisms”, Nonlinear Analysis, Theory, Methods Applications, 4:6 (1981), 1167–1187 | DOI | MR

[13] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Nauk. dumka, Kiev, 1989 | MR

[14] Dobrynskii V. A., Svoistva tsiklov otobrazhenii, porozhdaemykh raznostnymi uravneniyami vtorogo poryadka s nelineinostyu tipa proizvedenie, Preprint, In-t matematiki NAN Ukrainy, Kiev, 1994 | MR

[15] Marotto F. R., “Snap-back repellers imply chaos in $\mathbb R^n$”, J. of Math. Analysis and Applications, 63:1 (1978), 199–223 | DOI | MR | Zbl

[16] Li T.-Y, York J. A., “Period three imply chaos”, Amer. Math. Monthly, 82 (1975), 985–992 | DOI | MR | Zbl

[17] Steinlein H., Walther H.-O., “Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for $C^1$-maps in Banach spaces”, J. of Dynamics and Differential Equations, 2:3 (1990), 325–365 | DOI | MR | Zbl

[18] Van Strien S. J., “On the bifurcations creating horseshoes”, Dynamical Systems and Turbulence, Warwick, 1980; Lecture Notes in Mathematics, 898, 1981, 316–351 | Zbl

[19] Alekseev V. M., Simvolicheskaya dinamika, In-t matematiki AN USSR, Kiev, 1976