Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1997_61_5_a0, author = {V. A. Dobrynskii}, title = {On semi-unimodal maps of the plane and the structure of their sets of non-wandering points}, journal = {Izvestiya. Mathematics }, pages = {899--931}, publisher = {mathdoc}, volume = {61}, number = {5}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a0/} }
TY - JOUR AU - V. A. Dobrynskii TI - On semi-unimodal maps of the plane and the structure of their sets of non-wandering points JO - Izvestiya. Mathematics PY - 1997 SP - 899 EP - 931 VL - 61 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a0/ LA - en ID - IM2_1997_61_5_a0 ER -
V. A. Dobrynskii. On semi-unimodal maps of the plane and the structure of their sets of non-wandering points. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 899-931. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a0/
[1] Hènon M., “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50 (1976), 69–77 | DOI | MR
[2] Lozi R., “Un attracteur etrange du type attracteur de Hènon”, J. Phys. Paris, 39 (Coll. C5) (1978), 9–10
[3] Pounder J. R., Rogers T. D., “The geometry of chaos: Dynamics of a nonlinear second-order difference equation”, Bull. Math. Biol., 42 (1980), 551–597 | MR | Zbl
[4] Aronson D. G., Chory M. A., Hall G. R., McGehee R. P., “Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study”, Commun. Math. Phys., 83 (1982), 303–354 | DOI | MR | Zbl
[5] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Dokl. RAN, 341:4 (1995), 442–445 | MR | Zbl
[6] Dobrynskii V. A., “Kriticheskie mnozhestva i unimodalnye otobrazheniya kvadrata”, Matem. zametki, 1995, no. 5, 669–680 | MR | Zbl
[7] Gumowski I., Mira C., Dynamique chaotique. Transformations ponctuelles. Trasition order-desorder, Editions Cepadues, Toulouse, 1980 | MR
[8] Gumowski I., Mira C., Recurrences and discrete dynamic systems, Lecture Notes in Mathematics, Springer, 1980 | MR
[9] Cathala J. C., Kawakami H., Mira C., “Singular points with $2$ multipliers $s_1=-s_2=1$ in the bifurcation curves of maps”, Int. J. of Bifurcation and Chaos, 2:4 (1992), 1001–1004 | DOI | MR | Zbl
[10] Gardini L., Absorbing areas and their bifurcations. Quaderno No 7, Preprint. March, 1992, Instituto di Scienze Economiche. Facolta' di Economia e Commercio; Universita' di Urbino, 94 pp. | MR
[11] Mira C., Fournier-Prunaret D., Gardini L., Kawakami H., Cathala J. C., “Basin bifurcations of two-dimensional non-invertible maps. Fractalization of basins”, Int. J. of Bifurcation and Chaos, 4:2 (1994), 343–381 | DOI | MR | Zbl
[12] Mira C., “Complex dynamics in two-dimensional endomorphisms”, Nonlinear Analysis, Theory, Methods Applications, 4:6 (1981), 1167–1187 | DOI | MR
[13] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Nauk. dumka, Kiev, 1989 | MR
[14] Dobrynskii V. A., Svoistva tsiklov otobrazhenii, porozhdaemykh raznostnymi uravneniyami vtorogo poryadka s nelineinostyu tipa proizvedenie, Preprint, In-t matematiki NAN Ukrainy, Kiev, 1994 | MR
[15] Marotto F. R., “Snap-back repellers imply chaos in $\mathbb R^n$”, J. of Math. Analysis and Applications, 63:1 (1978), 199–223 | DOI | MR | Zbl
[16] Li T.-Y, York J. A., “Period three imply chaos”, Amer. Math. Monthly, 82 (1975), 985–992 | DOI | MR | Zbl
[17] Steinlein H., Walther H.-O., “Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for $C^1$-maps in Banach spaces”, J. of Dynamics and Differential Equations, 2:3 (1990), 325–365 | DOI | MR | Zbl
[18] Van Strien S. J., “On the bifurcations creating horseshoes”, Dynamical Systems and Turbulence, Warwick, 1980; Lecture Notes in Mathematics, 898, 1981, 316–351 | Zbl
[19] Alekseev V. M., Simvolicheskaya dinamika, In-t matematiki AN USSR, Kiev, 1976