Certain classes of power series that cannot be analytically continued across their circle of convergence
Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 795-812.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define, in number-theoretical terms, the class $\{M\}$ of sets of natural numbers having the properties: 1) the asymptotic density $\gamma$ of a set $M$ satisfies the inequality $0\gamma1$; 2) if $G(z)$ is an entire function with non-negative Taylor coefficients and not growing too fast at infinity, then the power series $\sum_{m\in M}G(m)z^m$, having radius of convergence 1, cannot be analytically continued into the domain $|z|>1$ across any arc on the circle $|z|=1$.
@article{IM2_1997_61_4_a5,
     author = {A. I. Pavlov},
     title = {Certain classes of power series that cannot be analytically continued across their circle of convergence},
     journal = {Izvestiya. Mathematics },
     pages = {795--812},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a5/}
}
TY  - JOUR
AU  - A. I. Pavlov
TI  - Certain classes of power series that cannot be analytically continued across their circle of convergence
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 795
EP  - 812
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a5/
LA  - en
ID  - IM2_1997_61_4_a5
ER  - 
%0 Journal Article
%A A. I. Pavlov
%T Certain classes of power series that cannot be analytically continued across their circle of convergence
%J Izvestiya. Mathematics 
%D 1997
%P 795-812
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a5/
%G en
%F IM2_1997_61_4_a5
A. I. Pavlov. Certain classes of power series that cannot be analytically continued across their circle of convergence. Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 795-812. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a5/

[1] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[2] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950

[3] Titchmarsh E. Ch., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl

[4] Titchmarsh E. Ch., Teoriya dzeta-funktsii Rimana, IL, M., 1953

[5] Dienes P., The Taylor series, Dover Publ., New York, 1957 | MR | Zbl

[6] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod Eins”, Abh. Math. Sem. Hamburg, 1922, no. 1, 54–76 | DOI | MR

[7] Mordell L. J., “Irrational power series, III”, Proceed. Amer. Math. Soc., 16:4 (1965), 819–821 | DOI | MR | Zbl

[8] Caroll F. W., Kemperman J. H. B., “Noncontinuale analytic functions”, Duke Math. J., 32 (1965), 65–84 | DOI | MR

[9] Salem R., “Power series with integral coefficients”, Duke Math. J., 12 (1945), 153–172 | DOI | MR | Zbl

[10] Wallisser R., “Einige Satze über nichtforsetzbare Potenzreien”, Math. Z., 113 (1970), 61–67 | DOI | MR | Zbl

[11] Lucht L., “Power Series with Multiplicative Coefficients”, Math. Z., 177 (1981), 359–374 | DOI | MR | Zbl

[12] Kövari T., “A gap-theorem for entire functions of infinite order”, Michig. Math. J., 12 (1965), 133–140 | DOI | MR | Zbl