Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1997_61_4_a4, author = {P. I. Naumkin}, title = {Solution asymptotics at large times for the non-linear {Schr\"odinger} equation}, journal = {Izvestiya. Mathematics }, pages = {757--794}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a4/} }
P. I. Naumkin. Solution asymptotics at large times for the non-linear Schr\"odinger equation. Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 757-794. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a4/
[1] Cazenave T., An introduction to nonlinear Schrodinger equations, Textos de Metodes Matematicos, 22, 1989
[2] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR
[3] Abdovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[4] Novokshenov V. Yu., “Asimptotika pri $t\to \infty $ resheniya zadachi Koshi dlya nelineinogo uravneniya Shrëdingera”, DAN SSSR, 251:4 (1980), 799–801 | MR
[5] Its A. R., “Asimptotika reshenii nelineinogo uravneniya Shrëdingera i izomonodromnye deformatsii sistem lineinykh differentsialnykh uravnenii”, DAN SSSR, 261:1 (1981), 14–18 | MR | Zbl
[6] Zakharov V. E., Manakov S. V., “Asimptoticheskoe povedenie nelineinykh volnovykh sistem, integriruemykh metodom obratnoi zadachi”, ZhETF, 71 (1976), 203–215 | MR
[7] Manakov S. V., “Nelineinaya difraktsiya Fraungofera”, ZhETF, 65:10 (1973), 1392–1398
[8] Segur H., Ablowitz M. J., “Asymptotic solutions and conservation laws for the nonlinear Schrodinger equation. I; II”, J. Math. Phys., 17 (1976), 710–713 ; 714–716 | DOI | MR
[9] Barab J. E., “Nonexistence of asymptotically free solutions for a nonlinear Schrodinger equation”, J. Math. Phys., 25 (1984), 3270–3273 | DOI | MR | Zbl
[10] Cazenave T., “Equations de Schrodinger non lineaires en dimension deux”, Proc. R. Soc. Edinb., 84 (1979), 327–346 | MR | Zbl
[11] Cazenave T., Dias J. P., Figueira M., “A remark on the decay of the solutions of some Schrodinger equations”, Rend. Sem. Math. Univ. Polit. Torino, 40 (1982), 129–137 | MR | Zbl
[12] Cazenave T., Weissler F. B., “Rapidly decaying solutions of the nonlinear Schrodinger equations”, Comm. Math. Phys., 147 (1992), 75–100 | DOI | MR | Zbl
[13] Dias J. P., Figueira M., “Conservation laws and time decay for the solutions to some nonlinear Schrodinger–Hartree equations”, J. Math. Anal. Appl., 84 (1981), 486–508 | DOI | MR | Zbl
[14] Ginibre J., Velo G., “Time decay of finite energy solutions for the nonlinear Klein–Gordon and Schrodinger equations”, Ann. Inst. Henri. Poincare. Phys. Theor., 43 (1985), 399–442 | MR | Zbl
[15] Ginibre J., Velo G., “Scattering Theory in the energy space for a class of nonlinear Schrodinger equations”, J. Math. Pures Appl., 64 (1985), 363–401 | MR | Zbl
[16] Glassey R., “Asymptotic behaviour of solutions to certain nonlinear Schrodinger–Hartree equations”, Comm. Math. Phys., 53 (1977), 9–18 | DOI | MR | Zbl
[17] Hayashi N., “Asymptotic behavior of solutions to time dependent Hartree equations”, J. Nonlinear Anal. | MR
[18] Hayashi N., Ozawa T., “Time decay for some Schrodinger equations”, J. Funct. Anal., 85 (1989), 307–348 | DOI | MR | Zbl
[19] Hayashi N., Ozawa T., “Time decay of solutions of the Cauchy problem for time dependent Schrodinger–Hartree equations”, Comm. Math. Phys., 110 (1987), 467–478 | DOI | MR | Zbl
[20] Hayashi N., Ozawa T., “Scattering theory in the weighted $L_2(R_n)$ spaces for some Schrodinger equations”, Ann. Inst. Henri Poincare. Phys. Theor., 48 (1988), 17–37 | MR | Zbl
[21] Hayashi N., Tsutsumi Y., “$L_\infty (R_n)$ decay of classical solutions for nonlinear Schrodinger equations”, Proc. R. Soc. Edinb. A, 104 (1986), 309–327 | MR | Zbl
[22] Hayashi N., Tsutsumi Y., “Scattering theory for Hartree type equations”, Ann. Inst. Henri Poincare. Phys. Theor., 46 (1987), 187–213 | MR | Zbl
[23] Lin J. E., Strauss W. A., “Decay and scattering of solutions of a nonlinear Schrodinger equation”, J. Funct. Anal., 30 (1978), 245–263 | DOI | MR | Zbl
[24] Hayashi N., Tsutsumi Y., “Remarks on the scattering problem for non-linear Schrodinger equations”, Lectures notes in Mathematics, 1285 (1984), 162–168 | DOI | MR
[25] Lin Yue., “Asymptotic behavior of solutions of Schrodinger equations”, Chinese Ann. Math. Ser. A, 12:1 (1991), 19–25 | MR
[26] Naumkin P. I., “Asimptotika pri bolshikh vremenakh reshenii nelineinogo uravneniya Shrëdingera v $2+1$ izmereniyakh”, Izv. RAN. Ser. matem., 57:5 (1993), 197–209 | Zbl
[27] Siqueire E. S. R., “Asymptotic behavior of the solutions of a nonlinear system of Schrodinger equations”, Nonlinear Anal., 20:10 (1993), 1231–1243 | DOI | MR
[28] Strauss W. A., “Dispersion of low-energy waves for two conservative equations”, Arch. Rat. Mech. Anal., 55:1 (1974), 110–113 | DOI | MR
[29] Strauss W. A., “Nonlinear scattering theory”, Scattering theory in Mathematical Physics, eds. Lavita J., Marchand J. P. Reidel, 1974
[30] Strauss W. A., “Nonlinear scattering theory at low energy”, J. Funct. Anal., 43 (1981), 101–133 | DOI | MR
[31] Schonbek M. E., “Decay of solutions of Schroedinger equations”, Duke Math. J., 46 (1979), 203–213 | DOI | MR
[32] Tsutsumi Y., “Global existence and asymptotic behaviour of solutions for the Maxwell–Schrodinger equations in three space dimensions”, Comm. Math. Phys., 151:3 (1993), 543–576 | DOI | MR | Zbl
[33] Tsutsumi Y., “Scattering problem for nonlinear Schrodinger equations”, Ann. Inst. Henry Poincare. Phys. Theor., 43 (1985), 321–347 | MR | Zbl
[34] Tsutsumi Y., Yajima K., “The asymptotic behavior of nonlinear Schrodinger equations”, Bull. AMS, 11 (1984), 186–188 | DOI | MR | Zbl
[35] Weinstein W. I., “Nonlinear Schrodinger equations and sharp interpolations estimates”, Comm. Math. Phys., 87 (1983), 567–576 | DOI | MR | Zbl
[36] Yao Jing Qi., “Time decay of solutions to a nonlinear Schrodinger equation in an exterior domain in $R_2$”, Nonlinear Anal., 19:6 (1992), 563–571 | DOI | MR | Zbl
[37] Ozawa T., “Long range scattering for nonlinear Schrodinger equation in one space dimension”, Comm. Math. Phys., 139 (1991), 479–493 | DOI | MR | Zbl
[38] Hayashi N., Ozawa T., “Modified wave operators for the derivative nonlinear Schrodinger equation”, Math. Ann., 298 (1994), 557–576 | DOI | MR | Zbl