On 2-locally Seidel graphs
Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 743-756.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $i$-neighbourhood of a vertex $a$ of a graph $\Gamma$ is the subgraph $\Gamma_i(a)$ induced by $\Gamma$ on the set of all vertices of $\Gamma$ that lie at distance $i$ from $a$. Let $\mathcal F$ denote a class of graphs. A graph $\Gamma$ is called an $i$-locally $\mathcal F$-graph if $\Gamma_i(a)$ lies in $\mathcal F$ for any vertex $a$ of $\Gamma$. In this paper we classify the connected regular graph in which the 2-neighbourhoods are Seidel graphs. (Recall that a Seidel graph is a strongly regular graph that has eigenvalue $-2$). The class of Seidel graphs consists of the complete multipartite graphs with parts of order 2, lattice and triangular graphs, as well as the Shrikhande, Chang, Petersen, Clebsch, and Schlafli graphs.
@article{IM2_1997_61_4_a3,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {On 2-locally {Seidel} graphs},
     journal = {Izvestiya. Mathematics },
     pages = {743--756},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a3/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On 2-locally Seidel graphs
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 743
EP  - 756
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a3/
LA  - en
ID  - IM2_1997_61_4_a3
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On 2-locally Seidel graphs
%J Izvestiya. Mathematics 
%D 1997
%P 743-756
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a3/
%G en
%F IM2_1997_61_4_a3
A. A. Makhnev; D. V. Paduchikh. On 2-locally Seidel graphs. Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 743-756. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a3/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin etc, 1989 | MR

[2] Hall J. I., Shult E. E., “Locally cotriangular graphs”, Geom. Dedic., 18:1 (1985), 113–159 | MR | Zbl

[3] Kabanov V. V., Makhnëv A. A., “Koreberno regulyarnye grafy, v kotorykh antiokrestnosti vershin koreberno regulyarny”, III Mezhdunarodnaya konferentsiya po algebre, Tez. dokl., Krasnoyarsk, 1993, 139 | Zbl

[4] Seidel J. J., “Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue $3$”, Lin. Alg. Appl., 1:2 (1968), 281–298 | DOI | MR | Zbl

[5] Buekenhout F., Hubaut X., “Locally polar spaces and related rank 3 groups”, J. Algebra, 45:2 (1977), 391–434 | DOI | MR | Zbl

[6] Makhnëv A. A., “O silno regulyarnykh grafakh s $\lambda=1$”, Matem. zametki, 44:5 (1988), 667–672 | MR | Zbl