Fourier transforms of rapidly decreasing functions
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 647-662
Voir la notice de l'article provenant de la source Math-Net.Ru
If $f\in L^p(\mathbb R)$, $p\geqslant 2$, then the Fourier transform $F(z)$ of the function $\exp(-a|t|^\alpha)f(t)$, $a>0$, $\alpha>1$, belongs to the space of entire functions that are $p$-power integrable over the whole plane with some completely determined weight. Conversely, if $F(z)$ is an entire function in such a space, where $1\leqslant p\leqslant 2$, then $F(z)$ is a Fourier transform of the above form for some function $f\in L^p(\mathbb R)$.
@article{IM2_1997_61_3_a6,
author = {A. M. Sedletskii},
title = {Fourier transforms of rapidly decreasing functions},
journal = {Izvestiya. Mathematics },
pages = {647--662},
publisher = {mathdoc},
volume = {61},
number = {3},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/}
}
A. M. Sedletskii. Fourier transforms of rapidly decreasing functions. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 647-662. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/