Fourier transforms of rapidly decreasing functions
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 647-662

Voir la notice de l'article provenant de la source Math-Net.Ru

If $f\in L^p(\mathbb R)$, $p\geqslant 2$, then the Fourier transform $F(z)$ of the function $\exp(-a|t|^\alpha)f(t)$, $a>0$, $\alpha>1$, belongs to the space of entire functions that are $p$-power integrable over the whole plane with some completely determined weight. Conversely, if $F(z)$ is an entire function in such a space, where $1\leqslant p\leqslant 2$, then $F(z)$ is a Fourier transform of the above form for some function $f\in L^p(\mathbb R)$.
@article{IM2_1997_61_3_a6,
     author = {A. M. Sedletskii},
     title = {Fourier transforms of rapidly decreasing functions},
     journal = {Izvestiya. Mathematics },
     pages = {647--662},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Fourier transforms of rapidly decreasing functions
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 647
EP  - 662
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/
LA  - en
ID  - IM2_1997_61_3_a6
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Fourier transforms of rapidly decreasing functions
%J Izvestiya. Mathematics 
%D 1997
%P 647-662
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/
%G en
%F IM2_1997_61_3_a6
A. M. Sedletskii. Fourier transforms of rapidly decreasing functions. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 647-662. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/