Fourier transforms of rapidly decreasing functions
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 647-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $f\in L^p(\mathbb R)$, $p\geqslant 2$, then the Fourier transform $F(z)$ of the function $\exp(-a|t|^\alpha)f(t)$, $a>0$, $\alpha>1$, belongs to the space of entire functions that are $p$-power integrable over the whole plane with some completely determined weight. Conversely, if $F(z)$ is an entire function in such a space, where $1\leqslant p\leqslant 2$, then $F(z)$ is a Fourier transform of the above form for some function $f\in L^p(\mathbb R)$.
@article{IM2_1997_61_3_a6,
     author = {A. M. Sedletskii},
     title = {Fourier transforms of rapidly decreasing functions},
     journal = {Izvestiya. Mathematics },
     pages = {647--662},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Fourier transforms of rapidly decreasing functions
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 647
EP  - 662
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/
LA  - en
ID  - IM2_1997_61_3_a6
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Fourier transforms of rapidly decreasing functions
%J Izvestiya. Mathematics 
%D 1997
%P 647-662
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/
%G en
%F IM2_1997_61_3_a6
A. M. Sedletskii. Fourier transforms of rapidly decreasing functions. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 647-662. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a6/

[1] Hardy G. H., “A theorem concerning Fourier transforms”, J. London Math. Soc., 8 (1933), 227–231 | DOI | Zbl

[2] Morgan G. W., “A note on Fourier transforms”, J. London Math. Soc., 9 (1934), 187–192 | DOI | Zbl

[3] Gelfand I. M., Shilov G. E., “Preobrazovaniya Fure bystro ubyvayuschikh funktsii i voprosy edinstvennosti resheniya zadachi Koshi”, UMN, 3:6 (1953), 3–54 | Zbl

[4] Babenko K. I., “Ob odnoi novoi probleme kvazianalitichnosti i o preobrazovanii Fure tselykh funktsii”, Tr. Mosk. matem. ob-va, 1956, no. 5, 523–542 | MR | Zbl

[5] Zalik R., “On approximation by shifts and a theorem of Wiener”, Trans. Amer. Math. Soc., 243 (1978), 299–308 | DOI | MR | Zbl

[6] Faxen B., “On approximation by translates and related problems in function theory”, Ark. math., 19 (1981), 271–289 | DOI | MR | Zbl

[7] Sedletskii A. M., “Approksimatsiya sdvigami i polnota vzveshennykh sistem eksponent v $L^2(\mathbb R)$”, Matem. sb., 123:1 (1984), 92–107 | MR

[8] Zalik R., “Remarks on a paper of Gelfand and Šilov on Fourier transforms”, J. Math. Anal. and Appl., 102 (1984), 102–112 | DOI | MR | Zbl

[9] Zalik R., Abuabara Saad T., “Some theorems concerning holomorphic Fourier transforms”, J. Math. Anal. and Appl., 126 (1987), 483–493 | DOI | MR | Zbl

[10] Sedletskii A. M., “Theorems of Paley–Wiener–Pitt's type for Fourier transforms of rapidly decreasing functions”, Integr. Transf. and Spec. Functions, 2:2 (1994), 153–164 | DOI | MR | Zbl

[11] Zigmund A., Trigonometricheskie ryady. V $2$-kh t. T. 1. Trigonometricheskie ryady, Mir, M., 1965 | MR

[12] Kopson E., Asimptoticheskie razlozheniya, Mir, M., 1966

[13] Sedletskii A. M., “An analogue of a Hardy–Littlewood theorem for Laplace transform and its applications”, Anal. math., 11:4 (1985), 343–354 | DOI | MR

[14] Salnikova T. A., “Polnye i minimalnye sistemy eksponent v prostranstvakh $L^p(\mathbb R)$”, Matem. zametki, 55:3 (1994), 118–129 | MR | Zbl

[15] Sedletskii A. M., “Biortogonalnye razlozheniya funktsii v ryady eksponent na intervalakh veschestvennoi osi”, UMN, 37:5 (1982), 51–95 | MR