Properties of functions in Orlicz spaces that depend on the geometry of their spectra
Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 399-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the geometry of the spectra (the supports of the Fourier transforms) of functions belonging to the Orlicz space $L_{\Phi}(\mathbb R^n)$ and prove, in particular, that if $f\in L_p(\mathbb R^n)$, $1\leqslant p\infty$ and $f(x)\not\equiv 0$, then for any point in the spectrum of $f$ there is a sequence of spectral points with non-zero components that converges to that point. It is shown that the behaviour of the sequence of Luxemburg norms of the derivatives of a function is completely characterized by its spectrum. A new method is suggested for deriving the Nikol'skii inequalities in the Luxemburg norm for functions with arbitrary spectra. The results are then applied to establish Paley–Wiener–Schwartz type theorems for cases that are not necessarily convex, and to study some questions in the theory of Sobolev–Orlicz spaces of infinite order that has been developed in recent years by Dubinskii and his students.
@article{IM2_1997_61_2_a7,
     author = {Ha Huy Bang},
     title = {Properties of functions in {Orlicz} spaces that depend on the geometry of their spectra},
     journal = {Izvestiya. Mathematics },
     pages = {399--434},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a7/}
}
TY  - JOUR
AU  - Ha Huy Bang
TI  - Properties of functions in Orlicz spaces that depend on the geometry of their spectra
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 399
EP  - 434
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a7/
LA  - en
ID  - IM2_1997_61_2_a7
ER  - 
%0 Journal Article
%A Ha Huy Bang
%T Properties of functions in Orlicz spaces that depend on the geometry of their spectra
%J Izvestiya. Mathematics 
%D 1997
%P 399-434
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a7/
%G en
%F IM2_1997_61_2_a7
Ha Huy Bang. Properties of functions in Orlicz spaces that depend on the geometry of their spectra. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 399-434. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a7/

[1] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, Nauka, M., 1951, 244–278

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[3] Ibragimov I. I., Ekstremalnye svoistva tselykh funktsii konechnoi stepeni, Elm, Baku, 1962 | MR

[4] Ibragimov I. I., “Ekstremalnye zadachi v odnom klasse tselykh funktsii konechnoi stepeni”, Izv. AN SSSR. Ser. matem., 23 (1959), 243–256 | MR | Zbl

[5] Ibragimov I. I., “Nekotorye ekstremalnye zadachi v odnom klasse tselykh funktsii konechnoi stepeni”, Izucheniya sovremennykh problem konstruktivnoi teorii funktsii, Izd-vo AN AzerSSR, Baku, 1965, 212–219

[6] Burenkov V. I., “Teoremy vlozheniya i prodolzheniya dlya klassov differentsiruemykh funktsii mnogikh peremennykh, zadannykh vo vsem prostranstve”, Itogi nauki. Matem. analiz, Izd-vo VINITI AN SSSR, M., 1966, 71–155 | MR

[7] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[8] Adams R., Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl

[9] Luxemburg W., Banach function spaces, Thesis, Technische Hogeschool te Delft, The Netherlands, 1955 | MR

[10] O'Neil R., “Fractional integration in Orlicz space, I”, Trans. Amer. Math. Soc., 115 (1965), 300–328 | DOI | MR | Zbl

[11] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo Sib. otd. AN SSSR, Novosibirsk, 1962

[12] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 1, Mir, M., 1986

[13] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[14] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Obobschennye funktsii. Vyp. 2, Fizmatgiz, M., 1958 | MR | Zbl

[15] Ha Huy Bang, Marimoto M., “The sequence of Luxemburg norms of derivatives”, Tokyo J. of Math., 17:1 (1994), 141–147 | MR | Zbl

[16] Ha Huy Bang, “A property of infinitely differentiable functions”, Proc. Amer. Math. Soc., 108:1 (1990), 73–76 | DOI | MR | Zbl

[17] Szegö G., Zygmund A., “On certain mean values of polynomials”, J. Analyse Math., 3 (1953), 225–244 | DOI | MR

[18] Nessel R. J., Wilmes G., “Nikolskii-type inequalities in connection with regular spectral measures”, Acta Math., 33 (1979), 169–182 | MR | Zbl

[19] Nessel R. J., Wilmes G., “Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type”, J. Austral. Math. Soc., 25 (1978), 7–18 | DOI | MR | Zbl

[20] Triebel H., “General function spaces. II: Inequalities of Plancherel–Polya–Nikolskii-type, $L_p$-space of analytic functions: $0

\leq \infty $”, J. Approximation Theory, 19 (1977), 154–175 | DOI | MR | Zbl

[21] Triebel H., Theory of function spaces, Birkhäuser, Basel–Boston–Stuttgart, 1983 | MR | Zbl

[22] Rodin V. A., “Neravenstva Dzheksona i Nikolskogo dlya trigonometricheskikh polinomov v simmetrichnom prostranstve”, Trudy 7-i zimnei shkoly (Drogobych, 1974), M., 1976, 133–139 | MR

[23] Ovchinnikov V. I., “Interpolyatsionnye teoremy, vytekayuschie iz neravenstva Grotendika”, Funktsion. analiz i ego prilozh., 10:4 (1976), 45–54 | MR | Zbl

[24] Berkolaiko M. Z., Ovchinnikov V. I., “Neravenstva dlya tselykh funktsii eksponentsialnogo tipa v simmetrichnykh prostranstvakh”, Tr. MIAN SSSR, 161, Nauka, M., 1983, 3–17 | MR | Zbl

[25] Dubinskii Yu. A., “Prostranstva Soboleva beskonechnogo poryadka”, UMN, 46:6 (1991), 97–131 | MR | Zbl

[26] Dubinskij Ju. A., Sobolev spaces of infinite order and differential equations, Riedel, Dordrecht–Boston–Lankaster–Tokyo, 1986 | MR

[27] Tran Duc Van, Dinh Nho Hao, Differential operators of infinite order with real arguments and their applications, World Scientific, Singapore, 1994 | MR

[28] Dubinskii Yu. A., “Prostranstva Soboleva beskonechnogo poryadka i povedenie zadach pri neogranichennom vozrastanii poryadka uravnenii”, Matem. sb., 98 (140):2 (1975), 163–184 | MR | Zbl

[29] Dubinskii Yu. A., “Netrivialnost prostranstv Soboleva beskonechnogo poryadka v sluchae polnogo evklidova prostranstva i tora”, Matem. sb., 100(142):3 (1976), 436–446 | MR | Zbl

[30] Chan Dyk Van, Nelineinye differentsialnye uravneniya i funktsionalnye prostranstva beskonechnogo poryadka, Izd-vo BGU, Minsk, 1983 | Zbl

[31] Kha Zui Bang, “Kriterii netrivialnosti klassov, prostranstv Soboleva–Orlicha beskonechnogo poryadka v polnom evklidovom prostranstve”, Sib. matem. zhurn., 31:1 (1990), 208–213 | MR | Zbl