Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1997_61_2_a7, author = {Ha Huy Bang}, title = {Properties of functions in {Orlicz} spaces that depend on the geometry of their spectra}, journal = {Izvestiya. Mathematics }, pages = {399--434}, publisher = {mathdoc}, volume = {61}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a7/} }
Ha Huy Bang. Properties of functions in Orlicz spaces that depend on the geometry of their spectra. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 399-434. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a7/
[1] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, Nauka, M., 1951, 244–278
[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[3] Ibragimov I. I., Ekstremalnye svoistva tselykh funktsii konechnoi stepeni, Elm, Baku, 1962 | MR
[4] Ibragimov I. I., “Ekstremalnye zadachi v odnom klasse tselykh funktsii konechnoi stepeni”, Izv. AN SSSR. Ser. matem., 23 (1959), 243–256 | MR | Zbl
[5] Ibragimov I. I., “Nekotorye ekstremalnye zadachi v odnom klasse tselykh funktsii konechnoi stepeni”, Izucheniya sovremennykh problem konstruktivnoi teorii funktsii, Izd-vo AN AzerSSR, Baku, 1965, 212–219
[6] Burenkov V. I., “Teoremy vlozheniya i prodolzheniya dlya klassov differentsiruemykh funktsii mnogikh peremennykh, zadannykh vo vsem prostranstve”, Itogi nauki. Matem. analiz, Izd-vo VINITI AN SSSR, M., 1966, 71–155 | MR
[7] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR
[8] Adams R., Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl
[9] Luxemburg W., Banach function spaces, Thesis, Technische Hogeschool te Delft, The Netherlands, 1955 | MR
[10] O'Neil R., “Fractional integration in Orlicz space, I”, Trans. Amer. Math. Soc., 115 (1965), 300–328 | DOI | MR | Zbl
[11] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo Sib. otd. AN SSSR, Novosibirsk, 1962
[12] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 1, Mir, M., 1986
[13] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl
[14] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Obobschennye funktsii. Vyp. 2, Fizmatgiz, M., 1958 | MR | Zbl
[15] Ha Huy Bang, Marimoto M., “The sequence of Luxemburg norms of derivatives”, Tokyo J. of Math., 17:1 (1994), 141–147 | MR | Zbl
[16] Ha Huy Bang, “A property of infinitely differentiable functions”, Proc. Amer. Math. Soc., 108:1 (1990), 73–76 | DOI | MR | Zbl
[17] Szegö G., Zygmund A., “On certain mean values of polynomials”, J. Analyse Math., 3 (1953), 225–244 | DOI | MR
[18] Nessel R. J., Wilmes G., “Nikolskii-type inequalities in connection with regular spectral measures”, Acta Math., 33 (1979), 169–182 | MR | Zbl
[19] Nessel R. J., Wilmes G., “Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type”, J. Austral. Math. Soc., 25 (1978), 7–18 | DOI | MR | Zbl
[20] Triebel H., “General function spaces. II: Inequalities of Plancherel–Polya–Nikolskii-type, $L_p$-space of analytic functions: $0
\leq \infty $”, J. Approximation Theory, 19 (1977), 154–175 | DOI | MR | Zbl[21] Triebel H., Theory of function spaces, Birkhäuser, Basel–Boston–Stuttgart, 1983 | MR | Zbl
[22] Rodin V. A., “Neravenstva Dzheksona i Nikolskogo dlya trigonometricheskikh polinomov v simmetrichnom prostranstve”, Trudy 7-i zimnei shkoly (Drogobych, 1974), M., 1976, 133–139 | MR
[23] Ovchinnikov V. I., “Interpolyatsionnye teoremy, vytekayuschie iz neravenstva Grotendika”, Funktsion. analiz i ego prilozh., 10:4 (1976), 45–54 | MR | Zbl
[24] Berkolaiko M. Z., Ovchinnikov V. I., “Neravenstva dlya tselykh funktsii eksponentsialnogo tipa v simmetrichnykh prostranstvakh”, Tr. MIAN SSSR, 161, Nauka, M., 1983, 3–17 | MR | Zbl
[25] Dubinskii Yu. A., “Prostranstva Soboleva beskonechnogo poryadka”, UMN, 46:6 (1991), 97–131 | MR | Zbl
[26] Dubinskij Ju. A., Sobolev spaces of infinite order and differential equations, Riedel, Dordrecht–Boston–Lankaster–Tokyo, 1986 | MR
[27] Tran Duc Van, Dinh Nho Hao, Differential operators of infinite order with real arguments and their applications, World Scientific, Singapore, 1994 | MR
[28] Dubinskii Yu. A., “Prostranstva Soboleva beskonechnogo poryadka i povedenie zadach pri neogranichennom vozrastanii poryadka uravnenii”, Matem. sb., 98 (140):2 (1975), 163–184 | MR | Zbl
[29] Dubinskii Yu. A., “Netrivialnost prostranstv Soboleva beskonechnogo poryadka v sluchae polnogo evklidova prostranstva i tora”, Matem. sb., 100(142):3 (1976), 436–446 | MR | Zbl
[30] Chan Dyk Van, Nelineinye differentsialnye uravneniya i funktsionalnye prostranstva beskonechnogo poryadka, Izd-vo BGU, Minsk, 1983 | Zbl
[31] Kha Zui Bang, “Kriterii netrivialnosti klassov, prostranstv Soboleva–Orlicha beskonechnogo poryadka v polnom evklidovom prostranstve”, Sib. matem. zhurn., 31:1 (1990), 208–213 | MR | Zbl