Classification of $G$-varieties of complexity~1
Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 363-397
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of finding a combinatorial description of the algebraic varieties in a given birational class that admit an action of a reductive group $G$. This is a direct generalization of the theory of toric varieties. A general approach to this problem is described, and the solution is given for varieties in which the orbits in general position of a Borel subgroup $G$ have codimension 1 (varieties of complexity 1).
@article{IM2_1997_61_2_a6,
author = {D. A. Timashev},
title = {Classification of $G$-varieties of complexity~1},
journal = {Izvestiya. Mathematics },
pages = {363--397},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a6/}
}
D. A. Timashev. Classification of $G$-varieties of complexity~1. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 363-397. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a6/