Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1997_61_2_a6, author = {D. A. Timashev}, title = {Classification of $G$-varieties of complexity~1}, journal = {Izvestiya. Mathematics }, pages = {363--397}, publisher = {mathdoc}, volume = {61}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a6/} }
D. A. Timashev. Classification of $G$-varieties of complexity~1. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 363-397. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a6/
[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR
[2] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovr. probl. mat. Fund. napr., 55, VINITI, M., 1989, 137–309 | MR
[3] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl
[4] Popov V. L., “Kvaziodnorodnye affinnye algebraicheskie mnogoobraziya gruppy $\operatorname {SL}(2)$”, Izv. AN SSSR. Ser. matem., 37:4 (1973), 792–832 | MR | Zbl
[5] Springer T. A., “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn. Sovr. probl. mat. Fund. napr., 55, VINITI, M., 1989, 6–136
[6] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[7] Brion M., “Parametrization and embeddings of a class of homogeneous spaces”, Contemporary Mathematics, 131:3 (1992), 353–360 | MR | Zbl
[8] Hartshorn R., “Ample vector bundles”, Publ. Math. IHES, 1966, no. 29, 63–94 | MR | Zbl
[9] Knop F., Kraft H., Luna D., Vust Th., “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar 13, eds. H. Kraft, P. Slodowy, T. A. Springer, Birkhäuser, Basel–Boston–Berlin, 1989, 77–88 | MR
[10] Kempf G., Knudson F., Mumford D., Saint-Donat B., Toroidal embeddings, I, Lect. Notes Math., 339, 1973, 209 pp. | MR | Zbl
[11] Knop F., “The Luna–Vust theory of spherical embeddings”, Proc. of the Hyderabad Conf. on Algebraic Groups, Manoj Prakashan, Madras, 1991, 225–249 | MR | Zbl
[12] Knop F., “Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind”, Math. Ann., 295 (1993), 333–363 | DOI | MR | Zbl
[13] Knop F., “Über Hilbert vierzehntes problem für Varietäten mit Kompliziertheit eins”, Math. Zeit., 213 (1993), 33–36 | DOI | MR | Zbl
[14] Luna D., Vust Th., “Plongements d'espaces homogenes”, Comment. Math. Helv., 58 (1983), 186–245 | DOI | MR | Zbl
[15] Moser-Jauslin L., Normal embeddings of $\operatorname {SL}(2)/\Gamma $, Thesis, Geneva, 1987
[16] Oda T., Convex bodies and algebraic geometry: an introduction to the theory of toric varieties, Springer-Verlag, Berlin, 1988, 212 pp. | MR | Zbl
[17] Sumihiro H., “Equivariant completion”, J. Math. Kyoto Univ., 14:1 (1974), 1–28 | MR | Zbl
[18] Wargane B., Détermination des valuations invariantes de $\operatorname {SL}(3)/T$, Thèse, Grenoble, 1982, 30 pp.