Classification of $G$-varieties of complexity~1
Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 363-397

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding a combinatorial description of the algebraic varieties in a given birational class that admit an action of a reductive group $G$. This is a direct generalization of the theory of toric varieties. A general approach to this problem is described, and the solution is given for varieties in which the orbits in general position of a Borel subgroup $G$ have codimension 1 (varieties of complexity 1).
@article{IM2_1997_61_2_a6,
     author = {D. A. Timashev},
     title = {Classification of $G$-varieties of complexity~1},
     journal = {Izvestiya. Mathematics },
     pages = {363--397},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a6/}
}
TY  - JOUR
AU  - D. A. Timashev
TI  - Classification of $G$-varieties of complexity~1
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 363
EP  - 397
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a6/
LA  - en
ID  - IM2_1997_61_2_a6
ER  - 
%0 Journal Article
%A D. A. Timashev
%T Classification of $G$-varieties of complexity~1
%J Izvestiya. Mathematics 
%D 1997
%P 363-397
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a6/
%G en
%F IM2_1997_61_2_a6
D. A. Timashev. Classification of $G$-varieties of complexity~1. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 363-397. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a6/