Additive congruences
Izvestiya. Mathematics, Tome 61 (1997) no. 2, pp. 317-329
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce the notion of $c$-regular set modulo $m$ and prove that such sets exist when $m$ is a power of a fixed odd prime.
@article{IM2_1997_61_2_a3,
author = {A. A. Karatsuba},
title = {Additive congruences},
journal = {Izvestiya. Mathematics},
pages = {317--329},
year = {1997},
volume = {61},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a3/}
}
A. A. Karatsuba. Additive congruences. Izvestiya. Mathematics, Tome 61 (1997) no. 2, pp. 317-329. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a3/
[1] Karatsuba A. A., “Problema Varinga dlya sravneniya po modulyu, ravnomu stepeni prostogo chisla”, Vestn. Moskovskogo un-ta. Ser. 1. Matematika, mekhanika, 4 (1962), 28–38 | MR | Zbl
[2] Vinogradov I. M., Izbrannye trudy, Izd-vo AN SSSR, M., 1952 | MR
[3] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR
[4] Karatsuba A. A., “O funktsii $G(n)$ v probleme Varinga”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 935–947 | MR | Zbl
[5] Vinogradov I. M., “K voprosu o verkhnei granitse dlya $G(n)$”, Izv. AN SSSR. Ser. matem., 23:5 (1959), 637–642 | MR | Zbl
[6] Vinogradov I. M., “Novaya otsenka $G(n)$ v probleme Varinga”, Dokl. AN SSSR, 4:5–6 (1934), 249–253 | Zbl