Additive congruences
Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 317-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of $c$-regular set modulo $m$ and prove that such sets exist when $m$ is a power of a fixed odd prime.
@article{IM2_1997_61_2_a3,
     author = {A. A. Karatsuba},
     title = {Additive congruences},
     journal = {Izvestiya. Mathematics },
     pages = {317--329},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a3/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - Additive congruences
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 317
EP  - 329
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a3/
LA  - en
ID  - IM2_1997_61_2_a3
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T Additive congruences
%J Izvestiya. Mathematics 
%D 1997
%P 317-329
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a3/
%G en
%F IM2_1997_61_2_a3
A. A. Karatsuba. Additive congruences. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 317-329. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a3/

[1] Karatsuba A. A., “Problema Varinga dlya sravneniya po modulyu, ravnomu stepeni prostogo chisla”, Vestn. Moskovskogo un-ta. Ser. 1. Matematika, mekhanika, 4 (1962), 28–38 | MR | Zbl

[2] Vinogradov I. M., Izbrannye trudy, Izd-vo AN SSSR, M., 1952 | MR

[3] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR

[4] Karatsuba A. A., “O funktsii $G(n)$ v probleme Varinga”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 935–947 | MR | Zbl

[5] Vinogradov I. M., “K voprosu o verkhnei granitse dlya $G(n)$”, Izv. AN SSSR. Ser. matem., 23:5 (1959), 637–642 | MR | Zbl

[6] Vinogradov I. M., “Novaya otsenka $G(n)$ v probleme Varinga”, Dokl. AN SSSR, 4:5–6 (1934), 249–253 | Zbl