A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions
Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 235-258

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a constructive method of approximation of a differential inclusion by a sequence of smooth control systems. Combining this with other methods of approximation [7], [17], we reduce the optimal control problem for a differential inclusion with state constraints to the classical optimal control problem without constraints on state or endpoints. New necessary optimality conditions for differential inclusions with state constraints are developed. These conditions involve both the refined Euler–Lagrange inclusion [8] and the stationarity condition for the Hamiltonian [15], [16].
@article{IM2_1997_61_2_a0,
     author = {S. M. Aseev},
     title = {A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions},
     journal = {Izvestiya. Mathematics },
     pages = {235--258},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 235
EP  - 258
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/
LA  - en
ID  - IM2_1997_61_2_a0
ER  - 
%0 Journal Article
%A S. M. Aseev
%T A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions
%J Izvestiya. Mathematics 
%D 1997
%P 235-258
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/
%G en
%F IM2_1997_61_2_a0
S. M. Aseev. A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 235-258. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/