A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions
Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 235-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a constructive method of approximation of a differential inclusion by a sequence of smooth control systems. Combining this with other methods of approximation [7], [17], we reduce the optimal control problem for a differential inclusion with state constraints to the classical optimal control problem without constraints on state or endpoints. New necessary optimality conditions for differential inclusions with state constraints are developed. These conditions involve both the refined Euler–Lagrange inclusion [8] and the stationarity condition for the Hamiltonian [15], [16].
@article{IM2_1997_61_2_a0,
     author = {S. M. Aseev},
     title = {A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions},
     journal = {Izvestiya. Mathematics },
     pages = {235--258},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 235
EP  - 258
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/
LA  - en
ID  - IM2_1997_61_2_a0
ER  - 
%0 Journal Article
%A S. M. Aseev
%T A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions
%J Izvestiya. Mathematics 
%D 1997
%P 235-258
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/
%G en
%F IM2_1997_61_2_a0
S. M. Aseev. A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 235-258. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[4] Blagodatskikh V. I., “Printsip maksimuma dlya differentsialnykh vklyuchenii”, Tr. MIAN, 166, Nauka, M., 1984, 23–43 | MR | Zbl

[5] Polovinkin E. S., Smirnov G. V., “Ob odnom podkhode k differentsirovaniyu mnogoznachnykh otobrazhenii i neobkhodimye usloviya optimalnosti reshenii differentsialnykh vklyuchenii”, Diff. uravn., 22 (1986), 944–954 | MR | Zbl

[6] Frankowska H., “The maximum principle for an optimal solution to a differential inclusion with endpoint constraints”, SIAM J. Control and Optimization, 25 (1987), 145–157 | DOI | MR | Zbl

[7] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[8] Smirnov G. V., “Diskretnye approksimatsii i optimalnye resheniya differentsialnykh vklyuchenii”, Kibernetika, 1991, 76–79 | MR | Zbl

[9] Loewen P. D., Rockafellar R. T., “Optimal control of unbounded differential inclusions”, SIAM J. Control and Optimization, 32 (1994), 442–470 | DOI | MR | Zbl

[10] Mordukhovich B. S., “Discrete approximations and refined Euler–Lagrange conditions for nonconvex differential inclusions”, SIAM J. Control and Optimization, 33:3 (1995), 887–915 | DOI | MR

[11] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, ZhVM i MF, 5:3 (1965), 395–453 | MR | Zbl

[12] Afanasev A. P., Dikusar V. V., Milyutin A. A., Chukanov S. A., Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990 | MR | Zbl

[13] Arutyunov A. V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhniki. Matem. analiz, 27, VINITI, M., 1989, 147–235 | MR

[14] Clarke F. H., “Optimal solutions to differential inclusions”, J. of Optim. Theory and Appl., 19 (1976), 469–478 | DOI | MR | Zbl

[15] Arutyunov A. V., Aseev S. M., “Printsip maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami. Nevyrozhdennost i ustoichivost”, Dokl. RAN, 334 (1994), 134–137 | MR | Zbl

[16] Arutyunov A. V., Aseev S. M., “State constraints in optimal control. The degeneracy phenomenon”, Systems and Control Letters, 26 (1995), 267–373 | DOI | MR

[17] Arutyunov A. V., Aseev S. M., Blagodatskikh V. I., “Neobkhodimye usloviya optimalnosti pervogo poryadka v zadache optimalnogo upravleniya differentsialnym vklyucheniem s fazovym ogranicheniem”, Matem. sb., 184:6 (1993), 3–32 | MR | Zbl

[18] Ornelas A., “Parametrization of Carathéodory multifunctions”, Rend. del Sem. Math. della Univ. di Padova, 83 (1990), 33–44 | MR | Zbl

[19] Lojasiewicz S. Jr., “Invariance of extremals”, Nonlinear Controllability and Optimal Control, ed. H. Sussmann, Marcel Dekker, Inc., New York–Basel, 1990, 237–261 | MR | Zbl

[20] Aseev S. M., Smooth approximation of differential inclusions and time-optimal problem, CRM–1610, Montreal, 1989

[21] Aseev S. M., “Gladkie approksimatsii differentsialnykh vklyuchenii i zadacha bystrodeistviya”, Tr. MIAN, 200, Nauka, M., 1991, 27–34 | Zbl

[22] Mordukhovich B. Sh., “Printsip maksimuma v zadache optimalnogo bystrodeistviya s negladkimi ogranicheniyami”, PMM, 40:6 (1976), 1014–1023 | MR | Zbl

[23] Aseev S. M., “O zadache optimalnogo upravleniya differentsialnym vklyucheniem s fazovym ogranicheniem”, Sovremennye metody teorii funktsii i smezhnykh problem matem. i mekh., Voronezhskaya zimnyaya matem. shkola. Tezisy dokladov (1995), Voronezh, 1995

[24] Aseev S. M., “Priblizhenie polunepreryvnykh mnogoznachnykh otobrazhenii nepreryvnymi”, Izv. AN SSSR. Ser. matem., 46:3 (1982), 460–476 | MR | Zbl

[25] Schneider R., “Smooth approximation of convex bodies”, Rendiconti del Circ. Matem. di Palermo. Ser. 2, 33 (1984), 436–440 | DOI | MR | Zbl

[26] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vest. MGU. Ser. Matem., mekh., astr., fiz., khim., 1959, no. 2, 25–32 | MR | Zbl

[27] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[28] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, Mir, M., 1967 | Zbl