Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1997_61_2_a0, author = {S. M. Aseev}, title = {A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions}, journal = {Izvestiya. Mathematics }, pages = {235--258}, publisher = {mathdoc}, volume = {61}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/} }
TY - JOUR AU - S. M. Aseev TI - A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions JO - Izvestiya. Mathematics PY - 1997 SP - 235 EP - 258 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/ LA - en ID - IM2_1997_61_2_a0 ER -
S. M. Aseev. A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 235-258. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a0/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[4] Blagodatskikh V. I., “Printsip maksimuma dlya differentsialnykh vklyuchenii”, Tr. MIAN, 166, Nauka, M., 1984, 23–43 | MR | Zbl
[5] Polovinkin E. S., Smirnov G. V., “Ob odnom podkhode k differentsirovaniyu mnogoznachnykh otobrazhenii i neobkhodimye usloviya optimalnosti reshenii differentsialnykh vklyuchenii”, Diff. uravn., 22 (1986), 944–954 | MR | Zbl
[6] Frankowska H., “The maximum principle for an optimal solution to a differential inclusion with endpoint constraints”, SIAM J. Control and Optimization, 25 (1987), 145–157 | DOI | MR | Zbl
[7] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl
[8] Smirnov G. V., “Diskretnye approksimatsii i optimalnye resheniya differentsialnykh vklyuchenii”, Kibernetika, 1991, 76–79 | MR | Zbl
[9] Loewen P. D., Rockafellar R. T., “Optimal control of unbounded differential inclusions”, SIAM J. Control and Optimization, 32 (1994), 442–470 | DOI | MR | Zbl
[10] Mordukhovich B. S., “Discrete approximations and refined Euler–Lagrange conditions for nonconvex differential inclusions”, SIAM J. Control and Optimization, 33:3 (1995), 887–915 | DOI | MR
[11] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, ZhVM i MF, 5:3 (1965), 395–453 | MR | Zbl
[12] Afanasev A. P., Dikusar V. V., Milyutin A. A., Chukanov S. A., Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990 | MR | Zbl
[13] Arutyunov A. V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhniki. Matem. analiz, 27, VINITI, M., 1989, 147–235 | MR
[14] Clarke F. H., “Optimal solutions to differential inclusions”, J. of Optim. Theory and Appl., 19 (1976), 469–478 | DOI | MR | Zbl
[15] Arutyunov A. V., Aseev S. M., “Printsip maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami. Nevyrozhdennost i ustoichivost”, Dokl. RAN, 334 (1994), 134–137 | MR | Zbl
[16] Arutyunov A. V., Aseev S. M., “State constraints in optimal control. The degeneracy phenomenon”, Systems and Control Letters, 26 (1995), 267–373 | DOI | MR
[17] Arutyunov A. V., Aseev S. M., Blagodatskikh V. I., “Neobkhodimye usloviya optimalnosti pervogo poryadka v zadache optimalnogo upravleniya differentsialnym vklyucheniem s fazovym ogranicheniem”, Matem. sb., 184:6 (1993), 3–32 | MR | Zbl
[18] Ornelas A., “Parametrization of Carathéodory multifunctions”, Rend. del Sem. Math. della Univ. di Padova, 83 (1990), 33–44 | MR | Zbl
[19] Lojasiewicz S. Jr., “Invariance of extremals”, Nonlinear Controllability and Optimal Control, ed. H. Sussmann, Marcel Dekker, Inc., New York–Basel, 1990, 237–261 | MR | Zbl
[20] Aseev S. M., Smooth approximation of differential inclusions and time-optimal problem, CRM–1610, Montreal, 1989
[21] Aseev S. M., “Gladkie approksimatsii differentsialnykh vklyuchenii i zadacha bystrodeistviya”, Tr. MIAN, 200, Nauka, M., 1991, 27–34 | Zbl
[22] Mordukhovich B. Sh., “Printsip maksimuma v zadache optimalnogo bystrodeistviya s negladkimi ogranicheniyami”, PMM, 40:6 (1976), 1014–1023 | MR | Zbl
[23] Aseev S. M., “O zadache optimalnogo upravleniya differentsialnym vklyucheniem s fazovym ogranicheniem”, Sovremennye metody teorii funktsii i smezhnykh problem matem. i mekh., Voronezhskaya zimnyaya matem. shkola. Tezisy dokladov (1995), Voronezh, 1995
[24] Aseev S. M., “Priblizhenie polunepreryvnykh mnogoznachnykh otobrazhenii nepreryvnymi”, Izv. AN SSSR. Ser. matem., 46:3 (1982), 460–476 | MR | Zbl
[25] Schneider R., “Smooth approximation of convex bodies”, Rendiconti del Circ. Matem. di Palermo. Ser. 2, 33 (1984), 436–440 | DOI | MR | Zbl
[26] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vest. MGU. Ser. Matem., mekh., astr., fiz., khim., 1959, no. 2, 25–32 | MR | Zbl
[27] Edvards R., Funktsionalnyi analiz, Mir, M., 1969
[28] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, Mir, M., 1967 | Zbl