On homological products
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 161-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of homological algebra and sheaf theory we study the general construction of the $\smallfrown$-product of homology by cohomology. In the most general form we establish a relation between the product and Zeeman filtration in homology. We show that the product on general spaces is defined by products on compact and closed locally compact subspaces. We reveal a new feature of the product in the case of homology and cohomology of pairs. We give a natural interpretation of the $\smallfrown$-product in terms of the diagonal embedding of a space in its Cartesian square. In the case of manifolds (including generalized manifolds) for homology and cohomology classes that are dual under Poincare duality, we establish identity between the general construction of the $\smallfrown$-product and the $\smallsmile$-product and describe the duality itself in terms of the product.
@article{IM2_1997_61_1_a6,
     author = {E. G. Sklyarenko},
     title = {On homological products},
     journal = {Izvestiya. Mathematics },
     pages = {161--181},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a6/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - On homological products
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 161
EP  - 181
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a6/
LA  - en
ID  - IM2_1997_61_1_a6
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T On homological products
%J Izvestiya. Mathematics 
%D 1997
%P 161-181
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a6/
%G en
%F IM2_1997_61_1_a6
E. G. Sklyarenko. On homological products. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 161-181. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a6/

[1] Sklyarenko E. G., “Teoriya gomologii i aksioma tochnosti”, UMN, 24:5 (1969), 87–140 | MR | Zbl

[2] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 831–843 | MR | Zbl

[3] Sklyarenko E. G., “Gomologii i kogomologii obschikh prostranstv”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravleniya, 50, VINITI, 1989, 129–266 | MR

[4] Sklyarenko E. G., “Obschie teorii gomologii i kogomologii. Sovremennoe sostoyanie i tipichnye primeneniya”, Itogi nauki i tekhn. Algebra. topologiya. geometriya, 27, VINITI, 1989, 125–228 | MR | Zbl

[5] Sklyarenko E. G., “O filtratsii Zimana v gomologiyakh”, Matem. sb., 183:12 (1992), 103–116 | MR | Zbl

[6] Sklyarenko E. G., “O prirode gomologicheskikh umnozhenii i dvoistvennosti”, UMN, 49:1 (1994), 141–198 | MR | Zbl

[7] Kharlap A. E., “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Matem. sb., 96:3 (1975), 347–373 | MR | Zbl

[8] Borel A., Moore J. C., “Homology theory for locally compact spaces”, Michigan Math. J., 7 (1960), 137–159 | DOI | MR | Zbl

[9] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968 | MR

[10] Bredon G. E., “Wilder manifolds are locally orientable”, Proc. Nat. Acad. Sci. USA, 63:4 (1969), 1079–1081 | DOI | MR | Zbl

[11] Bredon G. E., Teoriya puchkov, Nauka, M., 1968 | MR

[12] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[13] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR

[14] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[15] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[16] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[17] McCrory C., “Zeeman's filtrations in homology”, Trans. Amer. Math. Soc., 250:49 (1979), 147–166 | DOI | MR | Zbl

[18] Spaner E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[19] Zeeman E. C., “Dihomology. III: A generalization of the Poincare duality for manifolds”, Proc. London Math. Soc., 13:49 (1963), 155–183 | DOI | MR | Zbl