On the fundamental groups of complements of toral curves
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 89-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for almost all curves $D$ in $\mathbb C^2$ given by an equation of the form $g(x,y)^a+h(x,y)^b=0$, where $a>1$ and $b>1$ are coprime integers, the fundamental group of the complement of the curve has presentation $\pi_1(\mathbb C^2 \setminus D) \simeq (x_1,x_2\mid x_1^a=x_2^b)$, that is, it coincides with the group of the torus knot $K_{a,b}$. In the projective case, for almost every curve $\overline D$ in $\mathbb P^2$ which is the projective closure of a curve in $\mathbb C^2$ given by an equation of the form $g(x,y)^a+h(x,y)^b=0$, the fundamental group $\pi_1(\mathbb P^2\setminus\overline D)$ of the complement is a free product with amalgamated subgroup of two cyclic groups of finite order. In particular, for the general curve $\overline D\subset\mathbb P^2$ given by the equation $l_{bc}^a(z_0,z_1,z_2)+l_{ac}^b(z_0,z_1,z_2)=0$, where $l_q$ is a homogenous polynomial of degree $q$, we have $\pi_1(\mathbb P^2\setminus\overline D)\simeq\langle x_1,x_2\mid x_1^a=x_2^b,x_1^{ac}=1\rangle$.
@article{IM2_1997_61_1_a3,
     author = {Vik. S. Kulikov},
     title = {On the fundamental groups of complements of toral curves},
     journal = {Izvestiya. Mathematics },
     pages = {89--112},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a3/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On the fundamental groups of complements of toral curves
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 89
EP  - 112
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a3/
LA  - en
ID  - IM2_1997_61_1_a3
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On the fundamental groups of complements of toral curves
%J Izvestiya. Mathematics 
%D 1997
%P 89-112
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a3/
%G en
%F IM2_1997_61_1_a3
Vik. S. Kulikov. On the fundamental groups of complements of toral curves. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 89-112. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a3/

[1] Kulikov Vik. S., “Fundamentalnaya gruppa dopolneniya k giperpoverkhnosti v $\mathbf P^n$”, Izv. RAN. Ser. matem., 55:2 (1991), 407–428 | MR | Zbl

[2] Kulikov Vik. S., “O strukture fundamentalnoi gruppy dopolneniya k algebraicheskim krivym v $\mathbf C^2$”, Izv. RAN. Ser. matem., 56:2 (1992), 469–480 | MR | Zbl

[3] Kulikov Vik. S., “Mnogochleny Aleksandera ploskikh algebraicheskikh krivykh”, Izv. RAN. Ser. matem., 57:1 (1993), 76–101 | MR | Zbl

[4] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[5] Némethi A., “On the fundamental group of the complement of certain singular plane curves”, Math. Proc. Camb. Phil. Soc., 102 (1987), 453–457 | DOI | MR | Zbl

[6] Oka M., “Some plane curves whose complements have non-abelian fundamental groups”, Math. Ann., 218:1 (1975), 55–65 | DOI | MR | Zbl

[7] Turpin W. S., “On the fundamental group of a certain class of plane curves”, Amer. J. Math., 59:3 (1937), 529–544 | DOI | MR | Zbl

[8] Zariski O., “On the problem of existence of algebraic function of two variebles possessing a given branch curve”, Amer. J. Math., 51 (1929), 305–428 | DOI | MR