On the fundamental groups of complements of toral curves
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 89-112

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for almost all curves $D$ in $\mathbb C^2$ given by an equation of the form $g(x,y)^a+h(x,y)^b=0$, where $a>1$ and $b>1$ are coprime integers, the fundamental group of the complement of the curve has presentation $\pi_1(\mathbb C^2 \setminus D) \simeq (x_1,x_2\mid x_1^a=x_2^b)$, that is, it coincides with the group of the torus knot $K_{a,b}$. In the projective case, for almost every curve $\overline D$ in $\mathbb P^2$ which is the projective closure of a curve in $\mathbb C^2$ given by an equation of the form $g(x,y)^a+h(x,y)^b=0$, the fundamental group $\pi_1(\mathbb P^2\setminus\overline D)$ of the complement is a free product with amalgamated subgroup of two cyclic groups of finite order. In particular, for the general curve $\overline D\subset\mathbb P^2$ given by the equation $l_{bc}^a(z_0,z_1,z_2)+l_{ac}^b(z_0,z_1,z_2)=0$, where $l_q$ is a homogenous polynomial of degree $q$, we have $\pi_1(\mathbb P^2\setminus\overline D)\simeq\langle x_1,x_2\mid x_1^a=x_2^b,x_1^{ac}=1\rangle$.
@article{IM2_1997_61_1_a3,
     author = {Vik. S. Kulikov},
     title = {On the fundamental groups of complements of toral curves},
     journal = {Izvestiya. Mathematics },
     pages = {89--112},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a3/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On the fundamental groups of complements of toral curves
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 89
EP  - 112
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a3/
LA  - en
ID  - IM2_1997_61_1_a3
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On the fundamental groups of complements of toral curves
%J Izvestiya. Mathematics 
%D 1997
%P 89-112
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a3/
%G en
%F IM2_1997_61_1_a3
Vik. S. Kulikov. On the fundamental groups of complements of toral curves. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 89-112. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a3/