Homogenization of non-linear second-order elliptic equations in perforated domains
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 69-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical homogenization method of elliptic boundary value problems is based on the continuation of a solution, given in a perforated domain, to the entire initial domain. This method requires substantial restrictions on the perforated domain (the “strong connectedness” condition). In this paper we propose a new approach, which does not use the continuation technique. Here the “strong connectedness” is replaced by the usual connectedness.
@article{IM2_1997_61_1_a2,
     author = {V. V. Zhikov and M. E. Rychago},
     title = {Homogenization of non-linear second-order elliptic equations in perforated domains},
     journal = {Izvestiya. Mathematics },
     pages = {69--88},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - M. E. Rychago
TI  - Homogenization of non-linear second-order elliptic equations in perforated domains
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 69
EP  - 88
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a2/
LA  - en
ID  - IM2_1997_61_1_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A M. E. Rychago
%T Homogenization of non-linear second-order elliptic equations in perforated domains
%J Izvestiya. Mathematics 
%D 1997
%P 69-88
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a2/
%G en
%F IM2_1997_61_1_a2
V. V. Zhikov; M. E. Rychago. Homogenization of non-linear second-order elliptic equations in perforated domains. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 69-88. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a2/

[1] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[2] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, UMN, 23:1 (1968), 45–90 | MR | Zbl

[3] Pankov A. A., “Ob usrednenii i $G$-skhodimosti nelineinykh ellipticheskikh operatorov”, DAN SSSR, 278:1 (1984), 37–41 | MR | Zbl

[4] Fusko N., Moskariello G., “On the homogenization of quasilinear divergence structure operators”, Ann. Mat. Pura Appl., 147 (1987), 1–13 | DOI | MR

[5] Tartar L., Cours Peccot au College de France, Paris, 1977

[6] Zhikov V. V., “On the homogenization of nonlinear variational problems in perforated domains”, Russian J. of mathem. physics, 2:3 (1994), 393–408 | MR | Zbl

[7] Zhikov V. V., “Ob usrednenii v perforirovannykh sluchainykh oblastyakh obschego vida”, Matem. zametki, 53:1 (1993), 41–58 | MR | Zbl

[8] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–711 | MR

[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[10] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[11] Acerbi E., Chiado Piat V., Dal Maso G., Percivale D., “An extension theorem for connected sets and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496 | DOI | MR | Zbl

[12] Chiado Piat V., Defranceschi A., “Homogenization of monotone operators”, Nonlinear Anal., 14 (1990), 717–732 | DOI | MR | Zbl

[13] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR