Homogenization of non-linear second-order elliptic equations in perforated domains
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 69-88

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical homogenization method of elliptic boundary value problems is based on the continuation of a solution, given in a perforated domain, to the entire initial domain. This method requires substantial restrictions on the perforated domain (the “strong connectedness” condition). In this paper we propose a new approach, which does not use the continuation technique. Here the “strong connectedness” is replaced by the usual connectedness.
@article{IM2_1997_61_1_a2,
     author = {V. V. Zhikov and M. E. Rychago},
     title = {Homogenization of non-linear second-order elliptic equations in perforated domains},
     journal = {Izvestiya. Mathematics },
     pages = {69--88},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - M. E. Rychago
TI  - Homogenization of non-linear second-order elliptic equations in perforated domains
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 69
EP  - 88
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a2/
LA  - en
ID  - IM2_1997_61_1_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A M. E. Rychago
%T Homogenization of non-linear second-order elliptic equations in perforated domains
%J Izvestiya. Mathematics 
%D 1997
%P 69-88
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a2/
%G en
%F IM2_1997_61_1_a2
V. V. Zhikov; M. E. Rychago. Homogenization of non-linear second-order elliptic equations in perforated domains. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 69-88. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a2/