Algebras of singular integral operators on compound contours with nodes that are logarithmic whirl points
Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1261-1292.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article treats the Banach algebra $\mathfrak M_p(\Gamma,\omega)$ generated by singular integral operators acting in the space $L_p(\Gamma,\omega)$, where $\omega$ is a power weight and $\Gamma$ a compound contour with nodes that are whirl points of logarithmic or weaker character, and by the operators of multiplication by bounded functions admitting discontinuities of the second kind. The algebra of symbols is described, and conditions in terms of the symbols are given for operators in $\mathfrak M_p(\Gamma,\omega)$ to be Fredholm. An essential role is played by theorems on local invertibility of pseudodifferential operators and by estimates of their local norms.
@article{IM2_1996_60_6_a5,
     author = {V. S. Rabinovich},
     title = {Algebras of singular integral operators on compound contours with nodes that are logarithmic whirl points},
     journal = {Izvestiya. Mathematics },
     pages = {1261--1292},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a5/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Algebras of singular integral operators on compound contours with nodes that are logarithmic whirl points
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1261
EP  - 1292
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a5/
LA  - en
ID  - IM2_1996_60_6_a5
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Algebras of singular integral operators on compound contours with nodes that are logarithmic whirl points
%J Izvestiya. Mathematics 
%D 1996
%P 1261-1292
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a5/
%G en
%F IM2_1996_60_6_a5
V. S. Rabinovich. Algebras of singular integral operators on compound contours with nodes that are logarithmic whirl points. Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1261-1292. http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a5/

[1] Gohberg I. C., Krupnik N. J., Einfuhrung in die Theorie der eindimentionalen Singullaren Integral Operatoren, Birkhauser, Basel, 1979 | MR

[2] Krupnik N., Banach algebras with symbol and singular integral operators, Birkhauser, Basel, 1987 | MR | Zbl

[3] Roch S., Silberman B., Algebras of convolution operators and their image in the Calkin algebras, Report Math. 90-05, Karl-Weierstrass-Ins. Math., Akad. Wiss. DDr, Berlin, 1990 | MR | Zbl

[4] Bottcher A., Silberman B., Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990 | MR

[5] Simonenko I. B., Chin Ngok Min., Lokalnyi printsip v teorii odnomernykh singulyarnykh uravnenii s kusochno-nepreryvnymi koeffitsientami, Rost. gosud. un-t, Rostov-na-Donu, 1986

[6] Roch S., Silberman B., “The structure of algebras of singular integral operators”, J. Integral Equat. and Appl., 4:3 (1992), 421–442 | DOI | MR | Zbl

[7] Plamenevskii B. A., Senichkin V. N., “O $C^*$-algebrakh singulyarnykh integralnykh operatorov s razryvnymi koeffitsientami na slozhnom konture”, Izv. VUZov. Matem., 1984, no. 1, 25–33 | MR | Zbl

[8] Gohberg I., Krupnik N., Spitkovskiy I., “Banach algebras of singular integral operators with piecewise continuous coefficients. General contour and weight”, J. Integral. Equat. and Appl., 17 (1993), 322–337 | DOI | MR | Zbl

[9] Duduchava R. V., Lotsabidze T., Saginashvili A., “Singulyarnye integralnye operatory na krivykh s kaspami”, Soobscheniya AN GruzSSR, 146:1 (1992), 21–24 | MR | Zbl

[10] Shapiro M. V., “Algebra singulyarnykh operatorov s karlemanovskim sdvigom na sostavnom konture”, Sib. matem. zhurn., 19:1 (1978), 201–216 | MR | Zbl

[11] Power S. C., “Hankel operators with PQC symbols and singular integral operators”, Proc. London. Math. Soc., 41 (1980), 45–65 | DOI | MR | Zbl

[12] Sarason D., “Toeplitz operator with piecewise quasicontinuous symbols”, Indiana Univ. Math. J., 26:5 (1977), 817–838 | DOI | MR | Zbl

[13] Bottcher A., Spitkovskiy T., “Toeplitz Operators with PQC symbols and weighted Hardy spaces”, J. Funct. Anal., 97:1 (1991), 194–214 | DOI | MR

[14] Silberman B., “The $C^*$-algebra generated by Toeplitz and Hankel operators with piecewise quasicontinuous symbols”, Integral Equation and Operator Theory, 10 (1987), 730–738 | DOI | MR | Zbl

[15] Suifulaev R. K., “Kraevaya zadacha Rimana na negladkikh otkrytykh krivykh”, Matem. sb., 112 (1980), 147–161 | MR

[16] Bottcher A., Karlovich Yu. I., “Toeplitz and singular integral operators on Carleson curves with logarithmic whirl points”, Integral Equations and Operator Theory, 22 (1995), 127–161 | DOI | MR

[17] Rabinovich V. S., “Psevdodifferentsialnye operatory Mellina i singulyarnye integralnye operatory na slozhnykh konturakh s ostsilliruyuschei kasatelnoi”, DAN SSSR, 321:5 (1991), 692–696 | Zbl

[18] Fedosov B. V., “Analiticheskie formuly indeksa ellipticheskikh operatorov”, Tr. mosk. matem. ob-va, 30 (1974), 159–241 | MR | Zbl

[19] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 3. Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[20] Taylor M. E., Pseudodifferential Operators, PUP, Princeton, New Jersey, 1981 | MR

[21] Grushin V. V., “Psevdodifferentsialnye operatory v $\mathbf R^n$ s ogranichennymi simvolami”, Funkts. analiz i ego prilozh., 4:3 (1970), 37–50 | MR | Zbl

[22] Rabinovich V. S., “Nëterovost psevdodifferentsialnykh operatorov s simvolami klassa $S_{\rho,\delta }^m$ ($0\leq \delta =\rho 1$)”, Matem. zametki, 27 (1980), 226–231 | MR | Zbl

[23] Beals R., “Characteriszation of pseudo-differential operators and applications”, Duke Math. J., 44 (1977), 45–57 | DOI | MR | Zbl