Geometric constructions of higher Bruhat orders and $M$-Morsifications
Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1183-1192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Higher Bruhat orders were introduced by Manin and Schechtman in the course of studying multi-dimensional generalizations of the Yang–Baxter equations. In this paper we present a problem from real singularity theory which generalizes Arnol'ds snake calculus (a coding of the connected components of the space of very nice $M$-Morsifications of a singularity $A_n$) and in which the role of updown permutations is played by their higher analogues – elements of special form in higher Bruhat orders.
@article{IM2_1996_60_6_a2,
     author = {G. G. Ilyuta},
     title = {Geometric constructions of higher {Bruhat} orders and $M${-Morsifications}},
     journal = {Izvestiya. Mathematics },
     pages = {1183--1192},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a2/}
}
TY  - JOUR
AU  - G. G. Ilyuta
TI  - Geometric constructions of higher Bruhat orders and $M$-Morsifications
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1183
EP  - 1192
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a2/
LA  - en
ID  - IM2_1996_60_6_a2
ER  - 
%0 Journal Article
%A G. G. Ilyuta
%T Geometric constructions of higher Bruhat orders and $M$-Morsifications
%J Izvestiya. Mathematics 
%D 1996
%P 1183-1192
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a2/
%G en
%F IM2_1996_60_6_a2
G. G. Ilyuta. Geometric constructions of higher Bruhat orders and $M$-Morsifications. Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1183-1192. http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a2/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1984 | MR

[2] Arnold V. I., “Ischislenie zmei i kombinatorika chisel Bernulli, Eilera i Springera grupp Kokstera”, UMN, 47:1 (1992), 3–45 | MR | Zbl

[3] Voevodskii V. A., Kapranov M. M., “Svobodnaya $n$-kategoriya, porozhdennaya kubom, orientirovannye matroidy i vysshie poryadki Bryua”, Funkts. analiz i ego prilozh., 25:1 (1991), 62–65 | MR | Zbl

[4] Gelfand I. M., Rybnikov G. L., “Algebraicheskie i topologicheskie invarianty orientirovannykh matroidov”, DAN, 307:4 (1989), 791–795 | MR

[5] Ilyuta G. G., “Vysshie poryadki Bryua i $M$-morsifikatsii”, DAN, 347:3 (1996), 306–308 | MR | Zbl

[6] Manin Yu. I., Shekhtman V. V., “Raspolozheniya veschestvennykh giperploskostei i uravneniya Zamolodchikova”, Tr. seminara “Teoretiko-gruppovye metody v fizike”, no. 1, 1986, 316–324 | MR

[7] Manin Yu. I., Shekhtman V. V., “O vysshikh poryadkakh Bryua, svyazannykh s simmetricheskoi gruppoi”, Funkts. analiz i ego prilozh., 20:2 (1986), 74, 75 | MR | Zbl

[8] Khovanskii A. G., “Ob odnom klasse transtsendentnykh uravnenii”, DAN SSSR, 255:4 (1980), 804–807 | MR

[9] Arnold V. I., “Springer number and morsification spaces”, J. Algebraic Geometry, 1:2 (1992), 197–214 | MR | Zbl

[10] Cataneze F., Frediani P., “Configurations of real and complex polynomials”, Asterisque, 218 (1993), 61–93 | MR

[11] Edelman P., Greene C., “Balanced tableaux”, Adv. Math., 63 (1987), 42–99 | DOI | MR | Zbl

[12] Kirillov A. N., Berenstein A. D., “Groups generated by involutions, Gelfand–Tsetlin patterns, and combinatorics of Young tableaux”, Algebra i analiz, 7:1 (1995), 92–152 | MR | Zbl

[13] Looijenga E., “The discriminant of a real simple singularity”, Compositio Math., 37. Fase 1 (1987), 51–62 | MR

[14] Manin Y. I., Schechtman V. V., “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Adv. Studies in Pure Math., 44 (1985), 289–308 | MR

[15] Moishezon B., “Algebraic surfaces and the arithmetic of braids, II”, Contemporary Math., 44 (1985), 311–344 | MR | Zbl

[16] Moishezon B., Teicher M., “Braid group technique in complex geometry. I: Line arrangements in $\mathrm {CP}^2$”, Contemporary Math., 78 (1986), 425–555 | MR

[17] Orlik P., Terao H., Arrangements of hyperplanes, Springer-Verlag, Berlin, 1992 | MR | Zbl

[18] Salvetti M., “Topology of the complement of real hyperplanes in $\mathbb C^n$”, Invent. Math., 88 (1987), 603–618 | DOI | MR | Zbl

[19] Shabat G., Zvonkin A., “Plane trees and algebraic numbers”, Contemporary Math., 178 (1994), 233–275 | MR | Zbl

[20] Stanley R., “On the number of reduced decompositions of elements of Coxeter groups”, European J. Combinatorics, 5 (1984), 359–372 | MR | Zbl

[21] Ziegler G. M., “Higher Bruhat orders and cyclic hyperplane arrangements”, Topology, 32:2 (1993), 259–279 | DOI | MR | Zbl